Properties

Label 2-197-197.141-c2-0-30
Degree $2$
Conductor $197$
Sign $-0.815 - 0.578i$
Analytic cond. $5.36786$
Root an. cond. $2.31686$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.251 + 0.268i)2-s + (−2.95 − 0.928i)3-s + (0.247 − 3.85i)4-s + (−3.05 − 1.65i)5-s + (−0.494 − 1.02i)6-s + (1.23 − 0.0395i)7-s + (2.23 − 1.84i)8-s + (0.482 + 0.336i)9-s + (−0.324 − 1.23i)10-s + (−2.08 + 14.3i)11-s + (−4.31 + 11.1i)12-s + (−0.374 + 23.3i)13-s + (0.321 + 0.321i)14-s + (7.48 + 7.72i)15-s + (−14.2 − 1.84i)16-s + (−9.52 − 22.4i)17-s + ⋯
L(s)  = 1  + (0.125 + 0.134i)2-s + (−0.984 − 0.309i)3-s + (0.0618 − 0.964i)4-s + (−0.610 − 0.331i)5-s + (−0.0824 − 0.171i)6-s + (0.176 − 0.00565i)7-s + (0.279 − 0.230i)8-s + (0.0536 + 0.0373i)9-s + (−0.0324 − 0.123i)10-s + (−0.189 + 1.30i)11-s + (−0.359 + 0.930i)12-s + (−0.0288 + 1.79i)13-s + (0.0229 + 0.0229i)14-s + (0.498 + 0.514i)15-s + (−0.892 − 0.115i)16-s + (−0.560 − 1.32i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.815 - 0.578i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.815 - 0.578i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(197\)
Sign: $-0.815 - 0.578i$
Analytic conductor: \(5.36786\)
Root analytic conductor: \(2.31686\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{197} (141, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 197,\ (\ :1),\ -0.815 - 0.578i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.00902881 + 0.0283161i\)
\(L(\frac12)\) \(\approx\) \(0.00902881 + 0.0283161i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad197 \( 1 + (139. + 139. i)T \)
good2 \( 1 + (-0.251 - 0.268i)T + (-0.256 + 3.99i)T^{2} \)
3 \( 1 + (2.95 + 0.928i)T + (7.38 + 5.14i)T^{2} \)
5 \( 1 + (3.05 + 1.65i)T + (13.6 + 20.9i)T^{2} \)
7 \( 1 + (-1.23 + 0.0395i)T + (48.8 - 3.13i)T^{2} \)
11 \( 1 + (2.08 - 14.3i)T + (-115. - 34.4i)T^{2} \)
13 \( 1 + (0.374 - 23.3i)T + (-168. - 5.41i)T^{2} \)
17 \( 1 + (9.52 + 22.4i)T + (-201. + 207. i)T^{2} \)
19 \( 1 + (21.2 + 4.83i)T + (325. + 156. i)T^{2} \)
23 \( 1 + (-11.3 - 9.67i)T + (84.4 + 522. i)T^{2} \)
29 \( 1 + (-11.8 - 26.8i)T + (-565. + 622. i)T^{2} \)
31 \( 1 + (-1.20 + 1.78i)T + (-360. - 890. i)T^{2} \)
37 \( 1 + (26.2 - 3.38i)T + (1.32e3 - 347. i)T^{2} \)
41 \( 1 + (12.3 - 30.5i)T + (-1.20e3 - 1.16e3i)T^{2} \)
43 \( 1 + (44.5 + 59.6i)T + (-526. + 1.77e3i)T^{2} \)
47 \( 1 + (4.17 + 2.53i)T + (1.02e3 + 1.95e3i)T^{2} \)
53 \( 1 + (-13.0 + 14.3i)T + (-269. - 2.79e3i)T^{2} \)
59 \( 1 + (-7.73 - 2.02i)T + (3.03e3 + 1.70e3i)T^{2} \)
61 \( 1 + (-11.6 + 22.3i)T + (-2.12e3 - 3.05e3i)T^{2} \)
67 \( 1 + (29.6 + 120. i)T + (-3.97e3 + 2.07e3i)T^{2} \)
71 \( 1 + (-79.8 + 14.2i)T + (4.73e3 - 1.74e3i)T^{2} \)
73 \( 1 + (66.0 - 85.5i)T + (-1.35e3 - 5.15e3i)T^{2} \)
79 \( 1 + (-104. + 56.4i)T + (3.40e3 - 5.23e3i)T^{2} \)
83 \( 1 + (121. - 27.7i)T + (6.20e3 - 2.98e3i)T^{2} \)
89 \( 1 + (31.0 + 46.0i)T + (-2.97e3 + 7.34e3i)T^{2} \)
97 \( 1 + (74.6 + 132. i)T + (-4.87e3 + 8.04e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.65480396120850730386402264075, −10.97873428304870640253430247981, −9.756069373312084217299884435430, −8.798499954883944465088145768030, −6.97271872786685882446405768447, −6.66307146146053227025656857890, −5.06623679723728182820183833677, −4.51601730300910220634267937590, −1.82678780394655836433748696730, −0.01780013829130648010034178517, 2.95400482919370979567043121142, 4.08481299186438284234975814262, 5.46197273648874323969207049406, 6.50867979893236979511143607154, 8.122390563167098645545651085211, 8.354662300083353317216902985263, 10.50606181503837756386112034198, 10.92497782715514485743944271655, 11.72310859145006140724472689772, 12.72479635182099175008935866461

Graph of the $Z$-function along the critical line