L(s) = 1 | + 9·3-s + 26·7-s + 54·9-s − 59·11-s + 28·13-s + 5·17-s + 109·19-s + 234·21-s − 194·23-s + 243·27-s − 32·29-s + 10·31-s − 531·33-s − 198·37-s + 252·39-s + 117·41-s + 388·43-s − 68·47-s + 333·49-s + 45·51-s − 18·53-s + 981·57-s + 392·59-s − 710·61-s + 1.40e3·63-s − 253·67-s − 1.74e3·69-s + ⋯ |
L(s) = 1 | + 1.73·3-s + 1.40·7-s + 2·9-s − 1.61·11-s + 0.597·13-s + 0.0713·17-s + 1.31·19-s + 2.43·21-s − 1.75·23-s + 1.73·27-s − 0.204·29-s + 0.0579·31-s − 2.80·33-s − 0.879·37-s + 1.03·39-s + 0.445·41-s + 1.37·43-s − 0.211·47-s + 0.970·49-s + 0.123·51-s − 0.0466·53-s + 2.27·57-s + 0.864·59-s − 1.49·61-s + 2.80·63-s − 0.461·67-s − 3.04·69-s + ⋯ |
Λ(s)=(=(200s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(200s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.365371156 |
L(21) |
≈ |
3.365371156 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−p2T+p3T2 |
| 7 | 1−26T+p3T2 |
| 11 | 1+59T+p3T2 |
| 13 | 1−28T+p3T2 |
| 17 | 1−5T+p3T2 |
| 19 | 1−109T+p3T2 |
| 23 | 1+194T+p3T2 |
| 29 | 1+32T+p3T2 |
| 31 | 1−10T+p3T2 |
| 37 | 1+198T+p3T2 |
| 41 | 1−117T+p3T2 |
| 43 | 1−388T+p3T2 |
| 47 | 1+68T+p3T2 |
| 53 | 1+18T+p3T2 |
| 59 | 1−392T+p3T2 |
| 61 | 1+710T+p3T2 |
| 67 | 1+253T+p3T2 |
| 71 | 1+612T+p3T2 |
| 73 | 1+549T+p3T2 |
| 79 | 1−414T+p3T2 |
| 83 | 1+121T+p3T2 |
| 89 | 1+81T+p3T2 |
| 97 | 1+1502T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.13021354758249709631225017720, −10.85022621301508700998467311260, −9.916970747674976432630195441636, −8.774271175234734415392381115984, −7.908171117331579672088646876752, −7.58474050625036628826384153412, −5.47246513530206703464052781374, −4.18254549874557707237059706123, −2.84374232689199147475926810422, −1.70020505708268590747565550696,
1.70020505708268590747565550696, 2.84374232689199147475926810422, 4.18254549874557707237059706123, 5.47246513530206703464052781374, 7.58474050625036628826384153412, 7.908171117331579672088646876752, 8.774271175234734415392381115984, 9.916970747674976432630195441636, 10.85022621301508700998467311260, 12.13021354758249709631225017720