L(s) = 1 | + 9·3-s + 26·7-s + 54·9-s − 59·11-s + 28·13-s + 5·17-s + 109·19-s + 234·21-s − 194·23-s + 243·27-s − 32·29-s + 10·31-s − 531·33-s − 198·37-s + 252·39-s + 117·41-s + 388·43-s − 68·47-s + 333·49-s + 45·51-s − 18·53-s + 981·57-s + 392·59-s − 710·61-s + 1.40e3·63-s − 253·67-s − 1.74e3·69-s + ⋯ |
L(s) = 1 | + 1.73·3-s + 1.40·7-s + 2·9-s − 1.61·11-s + 0.597·13-s + 0.0713·17-s + 1.31·19-s + 2.43·21-s − 1.75·23-s + 1.73·27-s − 0.204·29-s + 0.0579·31-s − 2.80·33-s − 0.879·37-s + 1.03·39-s + 0.445·41-s + 1.37·43-s − 0.211·47-s + 0.970·49-s + 0.123·51-s − 0.0466·53-s + 2.27·57-s + 0.864·59-s − 1.49·61-s + 2.80·63-s − 0.461·67-s − 3.04·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(3.365371156\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.365371156\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - p^{2} T + p^{3} T^{2} \) |
| 7 | \( 1 - 26 T + p^{3} T^{2} \) |
| 11 | \( 1 + 59 T + p^{3} T^{2} \) |
| 13 | \( 1 - 28 T + p^{3} T^{2} \) |
| 17 | \( 1 - 5 T + p^{3} T^{2} \) |
| 19 | \( 1 - 109 T + p^{3} T^{2} \) |
| 23 | \( 1 + 194 T + p^{3} T^{2} \) |
| 29 | \( 1 + 32 T + p^{3} T^{2} \) |
| 31 | \( 1 - 10 T + p^{3} T^{2} \) |
| 37 | \( 1 + 198 T + p^{3} T^{2} \) |
| 41 | \( 1 - 117 T + p^{3} T^{2} \) |
| 43 | \( 1 - 388 T + p^{3} T^{2} \) |
| 47 | \( 1 + 68 T + p^{3} T^{2} \) |
| 53 | \( 1 + 18 T + p^{3} T^{2} \) |
| 59 | \( 1 - 392 T + p^{3} T^{2} \) |
| 61 | \( 1 + 710 T + p^{3} T^{2} \) |
| 67 | \( 1 + 253 T + p^{3} T^{2} \) |
| 71 | \( 1 + 612 T + p^{3} T^{2} \) |
| 73 | \( 1 + 549 T + p^{3} T^{2} \) |
| 79 | \( 1 - 414 T + p^{3} T^{2} \) |
| 83 | \( 1 + 121 T + p^{3} T^{2} \) |
| 89 | \( 1 + 81 T + p^{3} T^{2} \) |
| 97 | \( 1 + 1502 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.13021354758249709631225017720, −10.85022621301508700998467311260, −9.916970747674976432630195441636, −8.774271175234734415392381115984, −7.908171117331579672088646876752, −7.58474050625036628826384153412, −5.47246513530206703464052781374, −4.18254549874557707237059706123, −2.84374232689199147475926810422, −1.70020505708268590747565550696,
1.70020505708268590747565550696, 2.84374232689199147475926810422, 4.18254549874557707237059706123, 5.47246513530206703464052781374, 7.58474050625036628826384153412, 7.908171117331579672088646876752, 8.774271175234734415392381115984, 9.916970747674976432630195441636, 10.85022621301508700998467311260, 12.13021354758249709631225017720