L(s) = 1 | + 69·3-s − 174·7-s + 2.57e3·9-s + 7.11e3·11-s + 468·13-s + 9.55e3·17-s − 4.26e4·19-s − 1.20e4·21-s + 7.75e4·23-s + 2.67e4·27-s − 6.13e4·29-s + 2.51e5·31-s + 4.90e5·33-s + 8.34e4·37-s + 3.22e4·39-s + 3.63e5·41-s + 3.41e4·43-s + 7.08e5·47-s − 7.93e5·49-s + 6.59e5·51-s + 8.91e5·53-s − 2.93e6·57-s + 2.80e6·59-s − 3.21e6·61-s − 4.47e5·63-s − 1.37e6·67-s + 5.34e6·69-s + ⋯ |
L(s) = 1 | + 1.47·3-s − 0.191·7-s + 1.17·9-s + 1.61·11-s + 0.0590·13-s + 0.471·17-s − 1.42·19-s − 0.282·21-s + 1.32·23-s + 0.261·27-s − 0.466·29-s + 1.51·31-s + 2.37·33-s + 0.270·37-s + 0.0871·39-s + 0.823·41-s + 0.0655·43-s + 0.995·47-s − 0.963·49-s + 0.695·51-s + 0.822·53-s − 2.10·57-s + 1.78·59-s − 1.81·61-s − 0.225·63-s − 0.557·67-s + 1.96·69-s + ⋯ |
Λ(s)=(=(200s/2ΓC(s)L(s)Λ(8−s)
Λ(s)=(=(200s/2ΓC(s+7/2)L(s)Λ(1−s)
Particular Values
L(4) |
≈ |
4.147168207 |
L(21) |
≈ |
4.147168207 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−23pT+p7T2 |
| 7 | 1+174T+p7T2 |
| 11 | 1−7111T+p7T2 |
| 13 | 1−36pT+p7T2 |
| 17 | 1−9555T+p7T2 |
| 19 | 1+42601T+p7T2 |
| 23 | 1−77526T+p7T2 |
| 29 | 1+61312T+p7T2 |
| 31 | 1−251710T+p7T2 |
| 37 | 1−83462T+p7T2 |
| 41 | 1−363477T+p7T2 |
| 43 | 1−34188T+p7T2 |
| 47 | 1−708812T+p7T2 |
| 53 | 1−891762T+p7T2 |
| 59 | 1−2809152T+p7T2 |
| 61 | 1+3211510T+p7T2 |
| 67 | 1+1372033T+p7T2 |
| 71 | 1−4508308T+p7T2 |
| 73 | 1+628179T+p7T2 |
| 79 | 1−6130474T+p7T2 |
| 83 | 1+9921981T+p7T2 |
| 89 | 1−1806599T+p7T2 |
| 97 | 1+11676482T+p7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.14871729964829133129510440248, −9.866596046456988818755986768251, −9.039990701363541108747315157096, −8.425822955599581930428040179437, −7.23483959844173527970931189534, −6.22769979597744438789903169300, −4.39450799148665595811187862923, −3.48331598556110100812024700039, −2.36269973482364577566660554879, −1.09316959064928042871523792270,
1.09316959064928042871523792270, 2.36269973482364577566660554879, 3.48331598556110100812024700039, 4.39450799148665595811187862923, 6.22769979597744438789903169300, 7.23483959844173527970931189534, 8.425822955599581930428040179437, 9.039990701363541108747315157096, 9.866596046456988818755986768251, 11.14871729964829133129510440248