L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−0.707 − 0.707i)7-s + (0.707 + 0.707i)8-s + (1.70 + 0.707i)11-s + 1.00·14-s − 1.00·16-s + (−1.70 + 0.707i)22-s + (1 − i)23-s + (−0.707 − 0.707i)25-s + (−0.707 + 0.707i)28-s + (−1.70 + 0.707i)29-s + (0.707 − 0.707i)32-s + (0.707 − 1.70i)37-s + (1.70 + 0.707i)43-s + (0.707 − 1.70i)44-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−0.707 − 0.707i)7-s + (0.707 + 0.707i)8-s + (1.70 + 0.707i)11-s + 1.00·14-s − 1.00·16-s + (−1.70 + 0.707i)22-s + (1 − i)23-s + (−0.707 − 0.707i)25-s + (−0.707 + 0.707i)28-s + (−1.70 + 0.707i)29-s + (0.707 − 0.707i)32-s + (0.707 − 1.70i)37-s + (1.70 + 0.707i)43-s + (0.707 − 1.70i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.980 - 0.195i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.980 - 0.195i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8137753978\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8137753978\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.707 + 0.707i)T \) |
good | 5 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 11 | \( 1 + (-1.70 - 0.707i)T + (0.707 + 0.707i)T^{2} \) |
| 13 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 23 | \( 1 + (-1 + i)T - iT^{2} \) |
| 29 | \( 1 + (1.70 - 0.707i)T + (0.707 - 0.707i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (-0.707 + 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 + (-1.70 - 0.707i)T + (0.707 + 0.707i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (-0.707 - 0.292i)T + (0.707 + 0.707i)T^{2} \) |
| 59 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 61 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 67 | \( 1 + (-1.70 + 0.707i)T + (0.707 - 0.707i)T^{2} \) |
| 71 | \( 1 + (-1.41 - 1.41i)T + iT^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + 1.41iT - T^{2} \) |
| 83 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 89 | \( 1 - iT^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.407451932946569548496525650909, −8.733814121242069168788855298411, −7.60282735797675923994024290716, −7.05697341953273384571157184019, −6.45009743160304859862112054803, −5.67856037791634364500716182528, −4.43429246972704737324941216946, −3.82059493362408161803416664553, −2.21585999056885538858314932658, −0.935488014515606690582974486929,
1.16715124412542896136250607404, 2.34618061159598827753076317807, 3.49158128908759711168418783026, 3.90452363955520181326401696080, 5.39629206560249034541068808492, 6.29768459623533328924212306573, 7.04382689776782610169229323416, 7.948744555697086866181598103708, 8.864345392298610635473553447160, 9.395353912882291639610906360418