L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−0.707 − 0.707i)7-s + (0.707 + 0.707i)8-s + (1.70 + 0.707i)11-s + 1.00·14-s − 1.00·16-s + (−1.70 + 0.707i)22-s + (1 − i)23-s + (−0.707 − 0.707i)25-s + (−0.707 + 0.707i)28-s + (−1.70 + 0.707i)29-s + (0.707 − 0.707i)32-s + (0.707 − 1.70i)37-s + (1.70 + 0.707i)43-s + (0.707 − 1.70i)44-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−0.707 − 0.707i)7-s + (0.707 + 0.707i)8-s + (1.70 + 0.707i)11-s + 1.00·14-s − 1.00·16-s + (−1.70 + 0.707i)22-s + (1 − i)23-s + (−0.707 − 0.707i)25-s + (−0.707 + 0.707i)28-s + (−1.70 + 0.707i)29-s + (0.707 − 0.707i)32-s + (0.707 − 1.70i)37-s + (1.70 + 0.707i)43-s + (0.707 − 1.70i)44-s + ⋯ |
Λ(s)=(=(2016s/2ΓC(s)L(s)(0.980−0.195i)Λ(1−s)
Λ(s)=(=(2016s/2ΓC(s)L(s)(0.980−0.195i)Λ(1−s)
Degree: |
2 |
Conductor: |
2016
= 25⋅32⋅7
|
Sign: |
0.980−0.195i
|
Analytic conductor: |
1.00611 |
Root analytic conductor: |
1.00305 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2016(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2016, ( :0), 0.980−0.195i)
|
Particular Values
L(21) |
≈ |
0.8137753978 |
L(21) |
≈ |
0.8137753978 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 3 | 1 |
| 7 | 1+(0.707+0.707i)T |
good | 5 | 1+(0.707+0.707i)T2 |
| 11 | 1+(−1.70−0.707i)T+(0.707+0.707i)T2 |
| 13 | 1+(0.707−0.707i)T2 |
| 17 | 1+T2 |
| 19 | 1+(0.707−0.707i)T2 |
| 23 | 1+(−1+i)T−iT2 |
| 29 | 1+(1.70−0.707i)T+(0.707−0.707i)T2 |
| 31 | 1−T2 |
| 37 | 1+(−0.707+1.70i)T+(−0.707−0.707i)T2 |
| 41 | 1+iT2 |
| 43 | 1+(−1.70−0.707i)T+(0.707+0.707i)T2 |
| 47 | 1+T2 |
| 53 | 1+(−0.707−0.292i)T+(0.707+0.707i)T2 |
| 59 | 1+(0.707+0.707i)T2 |
| 61 | 1+(−0.707+0.707i)T2 |
| 67 | 1+(−1.70+0.707i)T+(0.707−0.707i)T2 |
| 71 | 1+(−1.41−1.41i)T+iT2 |
| 73 | 1+iT2 |
| 79 | 1+1.41iT−T2 |
| 83 | 1+(0.707−0.707i)T2 |
| 89 | 1−iT2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.407451932946569548496525650909, −8.733814121242069168788855298411, −7.60282735797675923994024290716, −7.05697341953273384571157184019, −6.45009743160304859862112054803, −5.67856037791634364500716182528, −4.43429246972704737324941216946, −3.82059493362408161803416664553, −2.21585999056885538858314932658, −0.935488014515606690582974486929,
1.16715124412542896136250607404, 2.34618061159598827753076317807, 3.49158128908759711168418783026, 3.90452363955520181326401696080, 5.39629206560249034541068808492, 6.29768459623533328924212306573, 7.04382689776782610169229323416, 7.948744555697086866181598103708, 8.864345392298610635473553447160, 9.395353912882291639610906360418