Properties

Label 2-2016-224.181-c0-0-1
Degree $2$
Conductor $2016$
Sign $0.980 - 0.195i$
Analytic cond. $1.00611$
Root an. cond. $1.00305$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−0.707 − 0.707i)7-s + (0.707 + 0.707i)8-s + (1.70 + 0.707i)11-s + 1.00·14-s − 1.00·16-s + (−1.70 + 0.707i)22-s + (1 − i)23-s + (−0.707 − 0.707i)25-s + (−0.707 + 0.707i)28-s + (−1.70 + 0.707i)29-s + (0.707 − 0.707i)32-s + (0.707 − 1.70i)37-s + (1.70 + 0.707i)43-s + (0.707 − 1.70i)44-s + ⋯
L(s)  = 1  + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−0.707 − 0.707i)7-s + (0.707 + 0.707i)8-s + (1.70 + 0.707i)11-s + 1.00·14-s − 1.00·16-s + (−1.70 + 0.707i)22-s + (1 − i)23-s + (−0.707 − 0.707i)25-s + (−0.707 + 0.707i)28-s + (−1.70 + 0.707i)29-s + (0.707 − 0.707i)32-s + (0.707 − 1.70i)37-s + (1.70 + 0.707i)43-s + (0.707 − 1.70i)44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.980 - 0.195i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.980 - 0.195i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2016\)    =    \(2^{5} \cdot 3^{2} \cdot 7\)
Sign: $0.980 - 0.195i$
Analytic conductor: \(1.00611\)
Root analytic conductor: \(1.00305\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2016} (181, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2016,\ (\ :0),\ 0.980 - 0.195i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8137753978\)
\(L(\frac12)\) \(\approx\) \(0.8137753978\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.707 - 0.707i)T \)
3 \( 1 \)
7 \( 1 + (0.707 + 0.707i)T \)
good5 \( 1 + (0.707 + 0.707i)T^{2} \)
11 \( 1 + (-1.70 - 0.707i)T + (0.707 + 0.707i)T^{2} \)
13 \( 1 + (0.707 - 0.707i)T^{2} \)
17 \( 1 + T^{2} \)
19 \( 1 + (0.707 - 0.707i)T^{2} \)
23 \( 1 + (-1 + i)T - iT^{2} \)
29 \( 1 + (1.70 - 0.707i)T + (0.707 - 0.707i)T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 + (-0.707 + 1.70i)T + (-0.707 - 0.707i)T^{2} \)
41 \( 1 + iT^{2} \)
43 \( 1 + (-1.70 - 0.707i)T + (0.707 + 0.707i)T^{2} \)
47 \( 1 + T^{2} \)
53 \( 1 + (-0.707 - 0.292i)T + (0.707 + 0.707i)T^{2} \)
59 \( 1 + (0.707 + 0.707i)T^{2} \)
61 \( 1 + (-0.707 + 0.707i)T^{2} \)
67 \( 1 + (-1.70 + 0.707i)T + (0.707 - 0.707i)T^{2} \)
71 \( 1 + (-1.41 - 1.41i)T + iT^{2} \)
73 \( 1 + iT^{2} \)
79 \( 1 + 1.41iT - T^{2} \)
83 \( 1 + (0.707 - 0.707i)T^{2} \)
89 \( 1 - iT^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.407451932946569548496525650909, −8.733814121242069168788855298411, −7.60282735797675923994024290716, −7.05697341953273384571157184019, −6.45009743160304859862112054803, −5.67856037791634364500716182528, −4.43429246972704737324941216946, −3.82059493362408161803416664553, −2.21585999056885538858314932658, −0.935488014515606690582974486929, 1.16715124412542896136250607404, 2.34618061159598827753076317807, 3.49158128908759711168418783026, 3.90452363955520181326401696080, 5.39629206560249034541068808492, 6.29768459623533328924212306573, 7.04382689776782610169229323416, 7.948744555697086866181598103708, 8.864345392298610635473553447160, 9.395353912882291639610906360418

Graph of the $Z$-function along the critical line