Properties

Label 2-2016-28.11-c0-0-1
Degree $2$
Conductor $2016$
Sign $0.947 + 0.319i$
Analytic cond. $1.00611$
Root an. cond. $1.00305$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)5-s i·7-s + (−0.866 − 0.5i)11-s + (0.5 − 0.866i)17-s + (0.866 − 0.5i)19-s + (0.866 − 0.5i)23-s + (0.866 + 0.5i)31-s + (0.866 − 0.5i)35-s + (0.5 + 0.866i)37-s + (−0.866 + 0.5i)47-s − 49-s + (−0.5 + 0.866i)53-s − 0.999i·55-s + (0.866 + 0.5i)59-s + (0.5 + 0.866i)61-s + ⋯
L(s)  = 1  + (0.5 + 0.866i)5-s i·7-s + (−0.866 − 0.5i)11-s + (0.5 − 0.866i)17-s + (0.866 − 0.5i)19-s + (0.866 − 0.5i)23-s + (0.866 + 0.5i)31-s + (0.866 − 0.5i)35-s + (0.5 + 0.866i)37-s + (−0.866 + 0.5i)47-s − 49-s + (−0.5 + 0.866i)53-s − 0.999i·55-s + (0.866 + 0.5i)59-s + (0.5 + 0.866i)61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.947 + 0.319i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.947 + 0.319i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2016\)    =    \(2^{5} \cdot 3^{2} \cdot 7\)
Sign: $0.947 + 0.319i$
Analytic conductor: \(1.00611\)
Root analytic conductor: \(1.00305\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2016} (991, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2016,\ (\ :0),\ 0.947 + 0.319i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.259251331\)
\(L(\frac12)\) \(\approx\) \(1.259251331\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + iT \)
good5 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
11 \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \)
13 \( 1 + T^{2} \)
17 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
19 \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \)
23 \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \)
29 \( 1 + T^{2} \)
31 \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \)
37 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
41 \( 1 + T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \)
53 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
59 \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \)
61 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
67 \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
79 \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
97 \( 1 + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.507836971990799624024658431948, −8.432999451299898205219519363898, −7.59388142950192727698524608465, −6.99019633507703100870972428139, −6.27856565477865577395681115374, −5.25701013261298193427637008779, −4.50837949496145981223053116923, −3.11120316724633613472369783783, −2.77853052213191372413307267916, −1.05388797508579704550789810452, 1.41251267060910699789832089450, 2.42231405924243423694679105265, 3.49844705769664769310765060146, 4.79300881731443883999701089725, 5.39704011476411240567593763831, 5.93452839075905779406593191283, 7.07499284015821160075765512658, 8.068774718947576421731831577336, 8.506177687810454783606270367899, 9.611522971258847856797550952682

Graph of the $Z$-function along the critical line