L(s) = 1 | + (0.5 + 0.866i)5-s − i·7-s + (−0.866 − 0.5i)11-s + (0.5 − 0.866i)17-s + (0.866 − 0.5i)19-s + (0.866 − 0.5i)23-s + (0.866 + 0.5i)31-s + (0.866 − 0.5i)35-s + (0.5 + 0.866i)37-s + (−0.866 + 0.5i)47-s − 49-s + (−0.5 + 0.866i)53-s − 0.999i·55-s + (0.866 + 0.5i)59-s + (0.5 + 0.866i)61-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)5-s − i·7-s + (−0.866 − 0.5i)11-s + (0.5 − 0.866i)17-s + (0.866 − 0.5i)19-s + (0.866 − 0.5i)23-s + (0.866 + 0.5i)31-s + (0.866 − 0.5i)35-s + (0.5 + 0.866i)37-s + (−0.866 + 0.5i)47-s − 49-s + (−0.5 + 0.866i)53-s − 0.999i·55-s + (0.866 + 0.5i)59-s + (0.5 + 0.866i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.947 + 0.319i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.947 + 0.319i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.259251331\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.259251331\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + iT \) |
good | 5 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.507836971990799624024658431948, −8.432999451299898205219519363898, −7.59388142950192727698524608465, −6.99019633507703100870972428139, −6.27856565477865577395681115374, −5.25701013261298193427637008779, −4.50837949496145981223053116923, −3.11120316724633613472369783783, −2.77853052213191372413307267916, −1.05388797508579704550789810452,
1.41251267060910699789832089450, 2.42231405924243423694679105265, 3.49844705769664769310765060146, 4.79300881731443883999701089725, 5.39704011476411240567593763831, 5.93452839075905779406593191283, 7.07499284015821160075765512658, 8.068774718947576421731831577336, 8.506177687810454783606270367899, 9.611522971258847856797550952682