L(s) = 1 | + (0.5 + 0.866i)5-s − i·7-s + (−0.866 − 0.5i)11-s + (0.5 − 0.866i)17-s + (0.866 − 0.5i)19-s + (0.866 − 0.5i)23-s + (0.866 + 0.5i)31-s + (0.866 − 0.5i)35-s + (0.5 + 0.866i)37-s + (−0.866 + 0.5i)47-s − 49-s + (−0.5 + 0.866i)53-s − 0.999i·55-s + (0.866 + 0.5i)59-s + (0.5 + 0.866i)61-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)5-s − i·7-s + (−0.866 − 0.5i)11-s + (0.5 − 0.866i)17-s + (0.866 − 0.5i)19-s + (0.866 − 0.5i)23-s + (0.866 + 0.5i)31-s + (0.866 − 0.5i)35-s + (0.5 + 0.866i)37-s + (−0.866 + 0.5i)47-s − 49-s + (−0.5 + 0.866i)53-s − 0.999i·55-s + (0.866 + 0.5i)59-s + (0.5 + 0.866i)61-s + ⋯ |
Λ(s)=(=(2016s/2ΓC(s)L(s)(0.947+0.319i)Λ(1−s)
Λ(s)=(=(2016s/2ΓC(s)L(s)(0.947+0.319i)Λ(1−s)
Degree: |
2 |
Conductor: |
2016
= 25⋅32⋅7
|
Sign: |
0.947+0.319i
|
Analytic conductor: |
1.00611 |
Root analytic conductor: |
1.00305 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2016(991,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2016, ( :0), 0.947+0.319i)
|
Particular Values
L(21) |
≈ |
1.259251331 |
L(21) |
≈ |
1.259251331 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+iT |
good | 5 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 11 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 13 | 1+T2 |
| 17 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 19 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 23 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 29 | 1+T2 |
| 31 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 37 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 41 | 1+T2 |
| 43 | 1−T2 |
| 47 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 53 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 59 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 67 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 79 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.507836971990799624024658431948, −8.432999451299898205219519363898, −7.59388142950192727698524608465, −6.99019633507703100870972428139, −6.27856565477865577395681115374, −5.25701013261298193427637008779, −4.50837949496145981223053116923, −3.11120316724633613472369783783, −2.77853052213191372413307267916, −1.05388797508579704550789810452,
1.41251267060910699789832089450, 2.42231405924243423694679105265, 3.49844705769664769310765060146, 4.79300881731443883999701089725, 5.39704011476411240567593763831, 5.93452839075905779406593191283, 7.07499284015821160075765512658, 8.068774718947576421731831577336, 8.506177687810454783606270367899, 9.611522971258847856797550952682