L(s) = 1 | + (−0.5 + 0.866i)3-s + i·5-s + (0.866 − 0.5i)7-s + (−0.499 − 0.866i)9-s + 11-s + (0.866 − 0.5i)13-s + (−0.866 − 0.5i)15-s + (0.5 + 0.866i)17-s + (0.5 − 0.866i)19-s + 0.999i·21-s − i·23-s + 0.999·27-s + (−0.866 − 0.5i)29-s + (−0.5 + 0.866i)33-s + (0.5 + 0.866i)35-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)3-s + i·5-s + (0.866 − 0.5i)7-s + (−0.499 − 0.866i)9-s + 11-s + (0.866 − 0.5i)13-s + (−0.866 − 0.5i)15-s + (0.5 + 0.866i)17-s + (0.5 − 0.866i)19-s + 0.999i·21-s − i·23-s + 0.999·27-s + (−0.866 − 0.5i)29-s + (−0.5 + 0.866i)33-s + (0.5 + 0.866i)35-s + ⋯ |
Λ(s)=(=(2016s/2ΓC(s)L(s)(0.592−0.805i)Λ(1−s)
Λ(s)=(=(2016s/2ΓC(s)L(s)(0.592−0.805i)Λ(1−s)
Degree: |
2 |
Conductor: |
2016
= 25⋅32⋅7
|
Sign: |
0.592−0.805i
|
Analytic conductor: |
1.00611 |
Root analytic conductor: |
1.00305 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2016(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2016, ( :0), 0.592−0.805i)
|
Particular Values
L(21) |
≈ |
1.194875650 |
L(21) |
≈ |
1.194875650 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.5−0.866i)T |
| 7 | 1+(−0.866+0.5i)T |
good | 5 | 1−iT−T2 |
| 11 | 1−T+T2 |
| 13 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 17 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 19 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 23 | 1+iT−T2 |
| 29 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 41 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 43 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 59 | 1+(−0.5−0.866i)T2 |
| 61 | 1+(0.5−0.866i)T2 |
| 67 | 1+(−0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 79 | 1+(1.73−i)T+(0.5−0.866i)T2 |
| 83 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 89 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 97 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.587589548471870389599470092871, −8.730531829315067923124603784024, −7.955477714235190748248262014195, −6.92870572666423559025515893823, −6.29794826676785517414818559118, −5.48848765485006413602720253093, −4.45122840173151208539054881816, −3.78374022559574872057664383171, −2.92414905440633866336208172549, −1.28439242315768460532123388816,
1.29218108148143774963332762647, 1.74203795383929641651888265714, 3.39864777543165075511724832125, 4.54313980455455922116515121411, 5.41969378321553787935723681215, 5.83076104638045905265364285067, 6.97672274278337315943678076104, 7.61242454489178719072553868603, 8.589198797342687419657004015702, 8.888943587485255001387938938330