L(s) = 1 | + 7-s + 2·23-s − 25-s + 49-s − 2·71-s + 2·79-s + 2·113-s + ⋯ |
L(s) = 1 | + 7-s + 2·23-s − 25-s + 49-s − 2·71-s + 2·79-s + 2·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.321842395\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.321842395\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 - T \) |
good | 5 | \( 1 + T^{2} \) |
| 11 | \( ( 1 - T )( 1 + T ) \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( ( 1 - T )^{2} \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( ( 1 - T )( 1 + T ) \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( ( 1 + T )^{2} \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( ( 1 - T )^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.196521524049055996965274831445, −8.609845861317562863991428662898, −7.73809760233912939438783173517, −7.15154253672002626812165505831, −6.13778775498451419586192957947, −5.22219344825821505019401964028, −4.59050143743240089575299917476, −3.54015364659302204675424728415, −2.41728989834666271512798557334, −1.27340330965313936869979181495,
1.27340330965313936869979181495, 2.41728989834666271512798557334, 3.54015364659302204675424728415, 4.59050143743240089575299917476, 5.22219344825821505019401964028, 6.13778775498451419586192957947, 7.15154253672002626812165505831, 7.73809760233912939438783173517, 8.609845861317562863991428662898, 9.196521524049055996965274831445