Properties

Label 2-2031-1.1-c1-0-20
Degree $2$
Conductor $2031$
Sign $1$
Analytic cond. $16.2176$
Root an. cond. $4.02711$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.95·2-s + 3-s + 1.83·4-s + 0.208·5-s − 1.95·6-s − 0.474·7-s + 0.319·8-s + 9-s − 0.407·10-s − 1.72·11-s + 1.83·12-s − 5.59·13-s + 0.928·14-s + 0.208·15-s − 4.29·16-s − 8.14·17-s − 1.95·18-s + 1.99·19-s + 0.382·20-s − 0.474·21-s + 3.38·22-s + 8.32·23-s + 0.319·24-s − 4.95·25-s + 10.9·26-s + 27-s − 0.870·28-s + ⋯
L(s)  = 1  − 1.38·2-s + 0.577·3-s + 0.918·4-s + 0.0930·5-s − 0.799·6-s − 0.179·7-s + 0.112·8-s + 0.333·9-s − 0.128·10-s − 0.521·11-s + 0.530·12-s − 1.55·13-s + 0.248·14-s + 0.0537·15-s − 1.07·16-s − 1.97·17-s − 0.461·18-s + 0.458·19-s + 0.0854·20-s − 0.103·21-s + 0.722·22-s + 1.73·23-s + 0.0652·24-s − 0.991·25-s + 2.14·26-s + 0.192·27-s − 0.164·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2031 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2031 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2031\)    =    \(3 \cdot 677\)
Sign: $1$
Analytic conductor: \(16.2176\)
Root analytic conductor: \(4.02711\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2031,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7955536078\)
\(L(\frac12)\) \(\approx\) \(0.7955536078\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
677 \( 1 + T \)
good2 \( 1 + 1.95T + 2T^{2} \)
5 \( 1 - 0.208T + 5T^{2} \)
7 \( 1 + 0.474T + 7T^{2} \)
11 \( 1 + 1.72T + 11T^{2} \)
13 \( 1 + 5.59T + 13T^{2} \)
17 \( 1 + 8.14T + 17T^{2} \)
19 \( 1 - 1.99T + 19T^{2} \)
23 \( 1 - 8.32T + 23T^{2} \)
29 \( 1 - 1.95T + 29T^{2} \)
31 \( 1 - 5.77T + 31T^{2} \)
37 \( 1 - 3.56T + 37T^{2} \)
41 \( 1 - 10.1T + 41T^{2} \)
43 \( 1 - 6.85T + 43T^{2} \)
47 \( 1 - 10.0T + 47T^{2} \)
53 \( 1 + 8.25T + 53T^{2} \)
59 \( 1 - 8.99T + 59T^{2} \)
61 \( 1 - 6.45T + 61T^{2} \)
67 \( 1 + 5.57T + 67T^{2} \)
71 \( 1 - 9.51T + 71T^{2} \)
73 \( 1 + 13.5T + 73T^{2} \)
79 \( 1 - 5.89T + 79T^{2} \)
83 \( 1 - 10.1T + 83T^{2} \)
89 \( 1 - 13.2T + 89T^{2} \)
97 \( 1 - 9.81T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.333659662429951068015914282221, −8.495484096146136140662853545402, −7.65530651003947956855204144842, −7.22248335826798021256429474375, −6.37337174536268023089622943174, −4.96938294011098487443269441159, −4.31886577931477656236952125142, −2.70374080171444571000182436909, −2.22639229531887286092778934394, −0.68777779500632556998515394337, 0.68777779500632556998515394337, 2.22639229531887286092778934394, 2.70374080171444571000182436909, 4.31886577931477656236952125142, 4.96938294011098487443269441159, 6.37337174536268023089622943174, 7.22248335826798021256429474375, 7.65530651003947956855204144842, 8.495484096146136140662853545402, 9.333659662429951068015914282221

Graph of the $Z$-function along the critical line