Properties

Label 2-2031-1.1-c1-0-35
Degree $2$
Conductor $2031$
Sign $1$
Analytic cond. $16.2176$
Root an. cond. $4.02711$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.0234·2-s + 3-s − 1.99·4-s − 0.565·5-s − 0.0234·6-s + 3.64·7-s + 0.0937·8-s + 9-s + 0.0132·10-s − 1.09·11-s − 1.99·12-s − 1.94·13-s − 0.0854·14-s − 0.565·15-s + 3.99·16-s + 1.32·17-s − 0.0234·18-s + 4.05·19-s + 1.13·20-s + 3.64·21-s + 0.0256·22-s + 6.02·23-s + 0.0937·24-s − 4.67·25-s + 0.0455·26-s + 27-s − 7.29·28-s + ⋯
L(s)  = 1  − 0.0165·2-s + 0.577·3-s − 0.999·4-s − 0.253·5-s − 0.00956·6-s + 1.37·7-s + 0.0331·8-s + 0.333·9-s + 0.00419·10-s − 0.330·11-s − 0.577·12-s − 0.539·13-s − 0.0228·14-s − 0.146·15-s + 0.999·16-s + 0.322·17-s − 0.00552·18-s + 0.931·19-s + 0.253·20-s + 0.795·21-s + 0.00547·22-s + 1.25·23-s + 0.0191·24-s − 0.935·25-s + 0.00894·26-s + 0.192·27-s − 1.37·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2031 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2031 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2031\)    =    \(3 \cdot 677\)
Sign: $1$
Analytic conductor: \(16.2176\)
Root analytic conductor: \(4.02711\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2031,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.887576271\)
\(L(\frac12)\) \(\approx\) \(1.887576271\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
677 \( 1 + T \)
good2 \( 1 + 0.0234T + 2T^{2} \)
5 \( 1 + 0.565T + 5T^{2} \)
7 \( 1 - 3.64T + 7T^{2} \)
11 \( 1 + 1.09T + 11T^{2} \)
13 \( 1 + 1.94T + 13T^{2} \)
17 \( 1 - 1.32T + 17T^{2} \)
19 \( 1 - 4.05T + 19T^{2} \)
23 \( 1 - 6.02T + 23T^{2} \)
29 \( 1 + 1.75T + 29T^{2} \)
31 \( 1 + 6.97T + 31T^{2} \)
37 \( 1 + 5.47T + 37T^{2} \)
41 \( 1 - 11.2T + 41T^{2} \)
43 \( 1 - 7.96T + 43T^{2} \)
47 \( 1 - 6.70T + 47T^{2} \)
53 \( 1 + 4.38T + 53T^{2} \)
59 \( 1 - 3.94T + 59T^{2} \)
61 \( 1 + 10.5T + 61T^{2} \)
67 \( 1 - 16.3T + 67T^{2} \)
71 \( 1 - 15.6T + 71T^{2} \)
73 \( 1 - 11.8T + 73T^{2} \)
79 \( 1 + 0.100T + 79T^{2} \)
83 \( 1 - 0.272T + 83T^{2} \)
89 \( 1 - 11.7T + 89T^{2} \)
97 \( 1 + 3.17T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.287079830587473141831599461242, −8.249514054770137028214077613917, −7.76522042173893729204538754878, −7.21567474070990020871137408227, −5.56253989024669318108501786990, −5.10502271796216626021802980783, −4.24399337692123222277455744038, −3.43527053738734828302861668508, −2.18759623247979309891673806144, −0.942329883396067221723866334276, 0.942329883396067221723866334276, 2.18759623247979309891673806144, 3.43527053738734828302861668508, 4.24399337692123222277455744038, 5.10502271796216626021802980783, 5.56253989024669318108501786990, 7.21567474070990020871137408227, 7.76522042173893729204538754878, 8.249514054770137028214077613917, 9.287079830587473141831599461242

Graph of the $Z$-function along the critical line