Properties

Label 2-2031-1.1-c1-0-36
Degree $2$
Conductor $2031$
Sign $1$
Analytic cond. $16.2176$
Root an. cond. $4.02711$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.64·2-s − 3-s + 0.700·4-s + 2.37·5-s + 1.64·6-s − 1.38·7-s + 2.13·8-s + 9-s − 3.90·10-s + 2.70·11-s − 0.700·12-s + 4.44·13-s + 2.27·14-s − 2.37·15-s − 4.91·16-s + 6.80·17-s − 1.64·18-s + 2.58·19-s + 1.66·20-s + 1.38·21-s − 4.44·22-s − 0.161·23-s − 2.13·24-s + 0.635·25-s − 7.31·26-s − 27-s − 0.971·28-s + ⋯
L(s)  = 1  − 1.16·2-s − 0.577·3-s + 0.350·4-s + 1.06·5-s + 0.670·6-s − 0.524·7-s + 0.754·8-s + 0.333·9-s − 1.23·10-s + 0.815·11-s − 0.202·12-s + 1.23·13-s + 0.609·14-s − 0.612·15-s − 1.22·16-s + 1.64·17-s − 0.387·18-s + 0.592·19-s + 0.371·20-s + 0.302·21-s − 0.948·22-s − 0.0337·23-s − 0.435·24-s + 0.127·25-s − 1.43·26-s − 0.192·27-s − 0.183·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2031 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2031 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2031\)    =    \(3 \cdot 677\)
Sign: $1$
Analytic conductor: \(16.2176\)
Root analytic conductor: \(4.02711\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2031,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.059432660\)
\(L(\frac12)\) \(\approx\) \(1.059432660\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
677 \( 1 - T \)
good2 \( 1 + 1.64T + 2T^{2} \)
5 \( 1 - 2.37T + 5T^{2} \)
7 \( 1 + 1.38T + 7T^{2} \)
11 \( 1 - 2.70T + 11T^{2} \)
13 \( 1 - 4.44T + 13T^{2} \)
17 \( 1 - 6.80T + 17T^{2} \)
19 \( 1 - 2.58T + 19T^{2} \)
23 \( 1 + 0.161T + 23T^{2} \)
29 \( 1 - 2.95T + 29T^{2} \)
31 \( 1 - 2.04T + 31T^{2} \)
37 \( 1 - 6.47T + 37T^{2} \)
41 \( 1 - 5.43T + 41T^{2} \)
43 \( 1 + 3.28T + 43T^{2} \)
47 \( 1 + 10.8T + 47T^{2} \)
53 \( 1 - 4.12T + 53T^{2} \)
59 \( 1 + 6.87T + 59T^{2} \)
61 \( 1 - 15.2T + 61T^{2} \)
67 \( 1 + 7.92T + 67T^{2} \)
71 \( 1 + 8.28T + 71T^{2} \)
73 \( 1 + 0.961T + 73T^{2} \)
79 \( 1 + 0.369T + 79T^{2} \)
83 \( 1 - 0.545T + 83T^{2} \)
89 \( 1 + 12.3T + 89T^{2} \)
97 \( 1 + 8.67T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.379661513554115812841040774956, −8.494084682161202794850811056485, −7.74607793414956258065842371343, −6.74615159261895055950433171021, −6.10856307718422621502571340701, −5.42576247737635105608055280134, −4.25411898089153904938113094946, −3.14927607221722378550305341288, −1.59806340870118909583869311632, −0.950269146986692268092185454903, 0.950269146986692268092185454903, 1.59806340870118909583869311632, 3.14927607221722378550305341288, 4.25411898089153904938113094946, 5.42576247737635105608055280134, 6.10856307718422621502571340701, 6.74615159261895055950433171021, 7.74607793414956258065842371343, 8.494084682161202794850811056485, 9.379661513554115812841040774956

Graph of the $Z$-function along the critical line