Properties

Label 2-2031-1.1-c1-0-4
Degree $2$
Conductor $2031$
Sign $1$
Analytic cond. $16.2176$
Root an. cond. $4.02711$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.555·2-s − 3-s − 1.69·4-s − 2.12·5-s − 0.555·6-s − 2.22·7-s − 2.05·8-s + 9-s − 1.17·10-s + 1.48·11-s + 1.69·12-s − 6.98·13-s − 1.23·14-s + 2.12·15-s + 2.24·16-s − 5.30·17-s + 0.555·18-s + 6.51·19-s + 3.59·20-s + 2.22·21-s + 0.825·22-s − 8.68·23-s + 2.05·24-s − 0.488·25-s − 3.88·26-s − 27-s + 3.75·28-s + ⋯
L(s)  = 1  + 0.392·2-s − 0.577·3-s − 0.845·4-s − 0.949·5-s − 0.226·6-s − 0.839·7-s − 0.725·8-s + 0.333·9-s − 0.373·10-s + 0.448·11-s + 0.488·12-s − 1.93·13-s − 0.329·14-s + 0.548·15-s + 0.560·16-s − 1.28·17-s + 0.130·18-s + 1.49·19-s + 0.803·20-s + 0.484·21-s + 0.176·22-s − 1.81·23-s + 0.418·24-s − 0.0976·25-s − 0.760·26-s − 0.192·27-s + 0.709·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2031 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2031 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2031\)    =    \(3 \cdot 677\)
Sign: $1$
Analytic conductor: \(16.2176\)
Root analytic conductor: \(4.02711\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2031,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3053560997\)
\(L(\frac12)\) \(\approx\) \(0.3053560997\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
677 \( 1 - T \)
good2 \( 1 - 0.555T + 2T^{2} \)
5 \( 1 + 2.12T + 5T^{2} \)
7 \( 1 + 2.22T + 7T^{2} \)
11 \( 1 - 1.48T + 11T^{2} \)
13 \( 1 + 6.98T + 13T^{2} \)
17 \( 1 + 5.30T + 17T^{2} \)
19 \( 1 - 6.51T + 19T^{2} \)
23 \( 1 + 8.68T + 23T^{2} \)
29 \( 1 + 3.91T + 29T^{2} \)
31 \( 1 + 6.16T + 31T^{2} \)
37 \( 1 + 8.31T + 37T^{2} \)
41 \( 1 + 2.61T + 41T^{2} \)
43 \( 1 - 8.41T + 43T^{2} \)
47 \( 1 - 11.5T + 47T^{2} \)
53 \( 1 - 7.45T + 53T^{2} \)
59 \( 1 - 10.2T + 59T^{2} \)
61 \( 1 - 12.8T + 61T^{2} \)
67 \( 1 - 0.263T + 67T^{2} \)
71 \( 1 - 3.73T + 71T^{2} \)
73 \( 1 - 7.21T + 73T^{2} \)
79 \( 1 + 1.73T + 79T^{2} \)
83 \( 1 - 1.21T + 83T^{2} \)
89 \( 1 + 1.31T + 89T^{2} \)
97 \( 1 + 2.28T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.452666562710394696827561120138, −8.344866125353894746727488024342, −7.38186629466960710604161055311, −6.91171630641409280086139583911, −5.69939748407765186715245783726, −5.16104063449272852292639102492, −4.05496565987024722004305117933, −3.76833845518315115791058970180, −2.37828720046931105089873851582, −0.33653610429892644117487122173, 0.33653610429892644117487122173, 2.37828720046931105089873851582, 3.76833845518315115791058970180, 4.05496565987024722004305117933, 5.16104063449272852292639102492, 5.69939748407765186715245783726, 6.91171630641409280086139583911, 7.38186629466960710604161055311, 8.344866125353894746727488024342, 9.452666562710394696827561120138

Graph of the $Z$-function along the critical line