L(s) = 1 | + (−0.614 − 0.789i)4-s + (0.0769 + 0.0300i)7-s + (0.981 + 0.292i)13-s + (−0.245 + 0.969i)16-s + (0.706 + 0.382i)19-s + (0.546 − 0.837i)25-s + (−0.0235 − 0.0792i)28-s + (0.986 − 1.16i)31-s + (−0.484 − 1.91i)37-s + (0.159 + 0.629i)43-s + (−0.730 − 0.672i)49-s + (−0.372 − 0.953i)52-s + (−1.39 − 0.477i)61-s + (0.915 − 0.401i)64-s + (0.512 − 0.250i)67-s + ⋯ |
L(s) = 1 | + (−0.614 − 0.789i)4-s + (0.0769 + 0.0300i)7-s + (0.981 + 0.292i)13-s + (−0.245 + 0.969i)16-s + (0.706 + 0.382i)19-s + (0.546 − 0.837i)25-s + (−0.0235 − 0.0792i)28-s + (0.986 − 1.16i)31-s + (−0.484 − 1.91i)37-s + (0.159 + 0.629i)43-s + (−0.730 − 0.672i)49-s + (−0.372 − 0.953i)52-s + (−1.39 − 0.477i)61-s + (0.915 − 0.401i)64-s + (0.512 − 0.250i)67-s + ⋯ |
Λ(s)=(=(2061s/2ΓC(s)L(s)(0.705+0.708i)Λ(1−s)
Λ(s)=(=(2061s/2ΓC(s)L(s)(0.705+0.708i)Λ(1−s)
Degree: |
2 |
Conductor: |
2061
= 32⋅229
|
Sign: |
0.705+0.708i
|
Analytic conductor: |
1.02857 |
Root analytic conductor: |
1.01418 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2061(406,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2061, ( :0), 0.705+0.708i)
|
Particular Values
L(21) |
≈ |
1.060452503 |
L(21) |
≈ |
1.060452503 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 229 | 1+(0.735+0.677i)T |
good | 2 | 1+(0.614+0.789i)T2 |
| 5 | 1+(−0.546+0.837i)T2 |
| 7 | 1+(−0.0769−0.0300i)T+(0.735+0.677i)T2 |
| 11 | 1+(0.986−0.164i)T2 |
| 13 | 1+(−0.981−0.292i)T+(0.837+0.546i)T2 |
| 17 | 1+(0.546−0.837i)T2 |
| 19 | 1+(−0.706−0.382i)T+(0.546+0.837i)T2 |
| 23 | 1+(−0.996−0.0825i)T2 |
| 29 | 1+(−0.735−0.677i)T2 |
| 31 | 1+(−0.986+1.16i)T+(−0.164−0.986i)T2 |
| 37 | 1+(0.484+1.91i)T+(−0.879+0.475i)T2 |
| 41 | 1+(−0.614−0.789i)T2 |
| 43 | 1+(−0.159−0.629i)T+(−0.879+0.475i)T2 |
| 47 | 1+(0.614−0.789i)T2 |
| 53 | 1+(0.945+0.324i)T2 |
| 59 | 1+(0.475−0.879i)T2 |
| 61 | 1+(1.39+0.477i)T+(0.789+0.614i)T2 |
| 67 | 1+(−0.512+0.250i)T+(0.614−0.789i)T2 |
| 71 | 1+(0.986+0.164i)T2 |
| 73 | 1+(−1.59+0.334i)T+(0.915−0.401i)T2 |
| 79 | 1+(−0.711−1.82i)T+(−0.735+0.677i)T2 |
| 83 | 1+(−0.879−0.475i)T2 |
| 89 | 1+iT2 |
| 97 | 1+(1.62−1.06i)T+(0.401−0.915i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.324677516593207663788380522171, −8.495176827509102513198757763459, −7.84476346303341139680765399295, −6.65627952986479550338022312281, −6.03149126804027703935120545044, −5.24724995762836450013459628976, −4.36828486555592519040403113333, −3.56930294240008492587227167776, −2.16470389066727843652982616073, −0.955127292869200122622876721431,
1.25942301374903281258607465362, 2.95884584301470603633934984340, 3.47884118252817192165470821090, 4.60367509535479472943173193013, 5.21951415061908316790043944694, 6.35439954548719790968838416283, 7.16141447257839856059612313622, 8.002934709869528584476099360380, 8.605870827615751940638000106344, 9.232159599135928982118932738209