Properties

Label 2-207-1.1-c3-0-20
Degree $2$
Conductor $207$
Sign $1$
Analytic cond. $12.2133$
Root an. cond. $3.49476$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.33·2-s + 20.5·4-s + 19.5·5-s − 20.6·7-s + 66.7·8-s + 104.·10-s − 44.8·11-s − 0.493·13-s − 110.·14-s + 192.·16-s − 78.7·17-s − 26.1·19-s + 399.·20-s − 239.·22-s + 23·23-s + 255.·25-s − 2.63·26-s − 422.·28-s − 85.1·29-s − 4.79·31-s + 492.·32-s − 420.·34-s − 401.·35-s − 47.9·37-s − 139.·38-s + 1.30e3·40-s + 426.·41-s + ⋯
L(s)  = 1  + 1.88·2-s + 2.56·4-s + 1.74·5-s − 1.11·7-s + 2.94·8-s + 3.29·10-s − 1.22·11-s − 0.0105·13-s − 2.10·14-s + 3.00·16-s − 1.12·17-s − 0.316·19-s + 4.47·20-s − 2.31·22-s + 0.208·23-s + 2.04·25-s − 0.0198·26-s − 2.85·28-s − 0.545·29-s − 0.0277·31-s + 2.72·32-s − 2.12·34-s − 1.94·35-s − 0.212·37-s − 0.596·38-s + 5.14·40-s + 1.62·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(207\)    =    \(3^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(12.2133\)
Root analytic conductor: \(3.49476\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 207,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.954843536\)
\(L(\frac12)\) \(\approx\) \(5.954843536\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
23 \( 1 - 23T \)
good2 \( 1 - 5.33T + 8T^{2} \)
5 \( 1 - 19.5T + 125T^{2} \)
7 \( 1 + 20.6T + 343T^{2} \)
11 \( 1 + 44.8T + 1.33e3T^{2} \)
13 \( 1 + 0.493T + 2.19e3T^{2} \)
17 \( 1 + 78.7T + 4.91e3T^{2} \)
19 \( 1 + 26.1T + 6.85e3T^{2} \)
29 \( 1 + 85.1T + 2.43e4T^{2} \)
31 \( 1 + 4.79T + 2.97e4T^{2} \)
37 \( 1 + 47.9T + 5.06e4T^{2} \)
41 \( 1 - 426.T + 6.89e4T^{2} \)
43 \( 1 - 472.T + 7.95e4T^{2} \)
47 \( 1 - 29.9T + 1.03e5T^{2} \)
53 \( 1 + 141.T + 1.48e5T^{2} \)
59 \( 1 + 538.T + 2.05e5T^{2} \)
61 \( 1 - 66.9T + 2.26e5T^{2} \)
67 \( 1 + 405.T + 3.00e5T^{2} \)
71 \( 1 + 468.T + 3.57e5T^{2} \)
73 \( 1 - 243.T + 3.89e5T^{2} \)
79 \( 1 - 323.T + 4.93e5T^{2} \)
83 \( 1 + 1.45e3T + 5.71e5T^{2} \)
89 \( 1 + 389.T + 7.04e5T^{2} \)
97 \( 1 - 920.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.73026383882221228978765037976, −11.03668255123451730830247049710, −10.34404871147648666261553810095, −9.241055828180501580844624728167, −7.25014026932080824957787275607, −6.19544262892206765400043931215, −5.72490971122620012953680959686, −4.56941454205786451787765856607, −2.94743227438865136820549254803, −2.16687754914804856008362858119, 2.16687754914804856008362858119, 2.94743227438865136820549254803, 4.56941454205786451787765856607, 5.72490971122620012953680959686, 6.19544262892206765400043931215, 7.25014026932080824957787275607, 9.241055828180501580844624728167, 10.34404871147648666261553810095, 11.03668255123451730830247049710, 12.73026383882221228978765037976

Graph of the $Z$-function along the critical line