Properties

Label 2-207-207.11-c3-0-10
Degree $2$
Conductor $207$
Sign $0.645 - 0.763i$
Analytic cond. $12.2133$
Root an. cond. $3.49476$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.20 + 0.0574i)2-s + (−3.19 + 4.10i)3-s + (−6.51 + 0.621i)4-s + (−10.2 − 9.80i)5-s + (3.61 − 5.12i)6-s + (−0.946 − 4.91i)7-s + (17.3 − 2.49i)8-s + (−6.62 − 26.1i)9-s + (12.9 + 11.2i)10-s + (−7.00 + 3.60i)11-s + (18.2 − 28.6i)12-s + (−78.3 − 15.1i)13-s + (1.42 + 5.86i)14-s + (73.0 − 10.8i)15-s + (30.5 − 5.89i)16-s + (−1.14 − 2.50i)17-s + ⋯
L(s)  = 1  + (−0.426 + 0.0203i)2-s + (−0.614 + 0.789i)3-s + (−0.814 + 0.0777i)4-s + (−0.919 − 0.876i)5-s + (0.245 − 0.348i)6-s + (−0.0511 − 0.265i)7-s + (0.768 − 0.110i)8-s + (−0.245 − 0.969i)9-s + (0.409 + 0.355i)10-s + (−0.191 + 0.0989i)11-s + (0.438 − 0.690i)12-s + (−1.67 − 0.322i)13-s + (0.0271 + 0.112i)14-s + (1.25 − 0.187i)15-s + (0.477 − 0.0920i)16-s + (−0.0163 − 0.0357i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.645 - 0.763i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.645 - 0.763i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(207\)    =    \(3^{2} \cdot 23\)
Sign: $0.645 - 0.763i$
Analytic conductor: \(12.2133\)
Root analytic conductor: \(3.49476\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{207} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 207,\ (\ :3/2),\ 0.645 - 0.763i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.367630 + 0.170524i\)
\(L(\frac12)\) \(\approx\) \(0.367630 + 0.170524i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (3.19 - 4.10i)T \)
23 \( 1 + (-17.4 - 108. i)T \)
good2 \( 1 + (1.20 - 0.0574i)T + (7.96 - 0.760i)T^{2} \)
5 \( 1 + (10.2 + 9.80i)T + (5.94 + 124. i)T^{2} \)
7 \( 1 + (0.946 + 4.91i)T + (-318. + 127. i)T^{2} \)
11 \( 1 + (7.00 - 3.60i)T + (772. - 1.08e3i)T^{2} \)
13 \( 1 + (78.3 + 15.1i)T + (2.03e3 + 816. i)T^{2} \)
17 \( 1 + (1.14 + 2.50i)T + (-3.21e3 + 3.71e3i)T^{2} \)
19 \( 1 + (-29.7 - 13.5i)T + (4.49e3 + 5.18e3i)T^{2} \)
29 \( 1 + (10.1 - 106. i)T + (-2.39e4 - 4.61e3i)T^{2} \)
31 \( 1 + (12.6 - 9.93i)T + (7.02e3 - 2.89e4i)T^{2} \)
37 \( 1 + (4.93 - 16.7i)T + (-4.26e4 - 2.73e4i)T^{2} \)
41 \( 1 + (113. - 118. i)T + (-3.27e3 - 6.88e4i)T^{2} \)
43 \( 1 + (4.28 - 5.45i)T + (-1.87e4 - 7.72e4i)T^{2} \)
47 \( 1 + (-547. - 315. i)T + (5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 + (228. + 263. i)T + (-2.11e4 + 1.47e5i)T^{2} \)
59 \( 1 + (-66.5 + 345. i)T + (-1.90e5 - 7.63e4i)T^{2} \)
61 \( 1 + (-167. + 417. i)T + (-1.64e5 - 1.56e5i)T^{2} \)
67 \( 1 + (-319. + 619. i)T + (-1.74e5 - 2.44e5i)T^{2} \)
71 \( 1 + (-322. - 501. i)T + (-1.48e5 + 3.25e5i)T^{2} \)
73 \( 1 + (-243. + 534. i)T + (-2.54e5 - 2.93e5i)T^{2} \)
79 \( 1 + (-182. + 62.9i)T + (3.87e5 - 3.04e5i)T^{2} \)
83 \( 1 + (46.5 - 44.3i)T + (2.72e4 - 5.71e5i)T^{2} \)
89 \( 1 + (194. - 1.35e3i)T + (-6.76e5 - 1.98e5i)T^{2} \)
97 \( 1 + (1.28e3 + 311. i)T + (8.11e5 + 4.18e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.17858382365084406358342068491, −10.99979526497733956591855145031, −9.894782815900995797919134173213, −9.318694502414315658495417061030, −8.190187730397247423271765165749, −7.27778613925872239078876863794, −5.28208427169230908425762096788, −4.70565666451841244712762637791, −3.62532329302260641880083488611, −0.66189179372377956436893388675, 0.40589032392750194922780844361, 2.50916819339246318905749613806, 4.33050085306265213119189673848, 5.50518458612804573280405791682, 7.03821017758654670741870987261, 7.58311179918853789576186001624, 8.674269624995872688440220084059, 9.990582353817117370696053373982, 10.84276263460010169664937963076, 11.87557624927579766466217538065

Graph of the $Z$-function along the critical line