Properties

Label 2-207-207.11-c3-0-13
Degree $2$
Conductor $207$
Sign $0.398 - 0.917i$
Analytic cond. $12.2133$
Root an. cond. $3.49476$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.85 − 0.136i)2-s + (−2.90 − 4.30i)3-s + (0.196 − 0.0187i)4-s + (−0.0350 − 0.0334i)5-s + (−8.89 − 11.9i)6-s + (4.71 + 24.4i)7-s + (−22.1 + 3.17i)8-s + (−10.1 + 25.0i)9-s + (−0.104 − 0.0908i)10-s + (−14.4 + 7.45i)11-s + (−0.650 − 0.791i)12-s + (87.7 + 16.9i)13-s + (16.8 + 69.2i)14-s + (−0.0422 + 0.248i)15-s + (−64.3 + 12.4i)16-s + (24.8 + 54.4i)17-s + ⋯
L(s)  = 1  + (1.01 − 0.0481i)2-s + (−0.558 − 0.829i)3-s + (0.0245 − 0.00234i)4-s + (−0.00313 − 0.00299i)5-s + (−0.605 − 0.811i)6-s + (0.254 + 1.32i)7-s + (−0.977 + 0.140i)8-s + (−0.375 + 0.926i)9-s + (−0.00331 − 0.00287i)10-s + (−0.396 + 0.204i)11-s + (−0.0156 − 0.0190i)12-s + (1.87 + 0.360i)13-s + (0.320 + 1.32i)14-s + (−0.000726 + 0.00427i)15-s + (−1.00 + 0.193i)16-s + (0.354 + 0.776i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.398 - 0.917i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.398 - 0.917i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(207\)    =    \(3^{2} \cdot 23\)
Sign: $0.398 - 0.917i$
Analytic conductor: \(12.2133\)
Root analytic conductor: \(3.49476\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{207} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 207,\ (\ :3/2),\ 0.398 - 0.917i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.42046 + 0.931276i\)
\(L(\frac12)\) \(\approx\) \(1.42046 + 0.931276i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (2.90 + 4.30i)T \)
23 \( 1 + (97.4 + 51.7i)T \)
good2 \( 1 + (-2.85 + 0.136i)T + (7.96 - 0.760i)T^{2} \)
5 \( 1 + (0.0350 + 0.0334i)T + (5.94 + 124. i)T^{2} \)
7 \( 1 + (-4.71 - 24.4i)T + (-318. + 127. i)T^{2} \)
11 \( 1 + (14.4 - 7.45i)T + (772. - 1.08e3i)T^{2} \)
13 \( 1 + (-87.7 - 16.9i)T + (2.03e3 + 816. i)T^{2} \)
17 \( 1 + (-24.8 - 54.4i)T + (-3.21e3 + 3.71e3i)T^{2} \)
19 \( 1 + (-34.6 - 15.8i)T + (4.49e3 + 5.18e3i)T^{2} \)
29 \( 1 + (22.8 - 239. i)T + (-2.39e4 - 4.61e3i)T^{2} \)
31 \( 1 + (149. - 117. i)T + (7.02e3 - 2.89e4i)T^{2} \)
37 \( 1 + (105. - 360. i)T + (-4.26e4 - 2.73e4i)T^{2} \)
41 \( 1 + (171. - 179. i)T + (-3.27e3 - 6.88e4i)T^{2} \)
43 \( 1 + (-61.3 + 77.9i)T + (-1.87e4 - 7.72e4i)T^{2} \)
47 \( 1 + (-58.1 - 33.5i)T + (5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 + (202. + 233. i)T + (-2.11e4 + 1.47e5i)T^{2} \)
59 \( 1 + (135. - 705. i)T + (-1.90e5 - 7.63e4i)T^{2} \)
61 \( 1 + (-300. + 751. i)T + (-1.64e5 - 1.56e5i)T^{2} \)
67 \( 1 + (105. - 205. i)T + (-1.74e5 - 2.44e5i)T^{2} \)
71 \( 1 + (262. + 408. i)T + (-1.48e5 + 3.25e5i)T^{2} \)
73 \( 1 + (-269. + 590. i)T + (-2.54e5 - 2.93e5i)T^{2} \)
79 \( 1 + (415. - 143. i)T + (3.87e5 - 3.04e5i)T^{2} \)
83 \( 1 + (-565. + 539. i)T + (2.72e4 - 5.71e5i)T^{2} \)
89 \( 1 + (53.3 - 370. i)T + (-6.76e5 - 1.98e5i)T^{2} \)
97 \( 1 + (-1.10e3 - 267. i)T + (8.11e5 + 4.18e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.26189400131258917183264983239, −11.64521770444940908958124267689, −10.53992818753658092817212737861, −8.798662382155006902801971431743, −8.237355205046718932618791569371, −6.44968782294698457388414626355, −5.82950399925590510232173113499, −4.90158893328124658040655494165, −3.31493937209978667930449185731, −1.75336903819820560038121358943, 0.58062853071791659870882793646, 3.54555979331975968205212197448, 4.03493770028271542536058470593, 5.33956433193218500961633037036, 6.05468054475694390561461048076, 7.53208752451679307168516491688, 8.961200813214178529447532055722, 9.992126451329269629686018688599, 11.02410943971666467238280530518, 11.60700366629544827665955791807

Graph of the $Z$-function along the critical line