Properties

Label 2-207-207.11-c3-0-27
Degree $2$
Conductor $207$
Sign $0.665 + 0.746i$
Analytic cond. $12.2133$
Root an. cond. $3.49476$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.78 + 0.180i)2-s + (2.93 + 4.29i)3-s + (6.30 − 0.602i)4-s + (−11.8 − 11.2i)5-s + (−11.8 − 15.6i)6-s + (3.18 + 16.5i)7-s + (6.24 − 0.898i)8-s + (−9.82 + 25.1i)9-s + (46.7 + 40.4i)10-s + (−4.52 + 2.33i)11-s + (21.0 + 25.2i)12-s + (−31.9 − 6.15i)13-s + (−15.0 − 61.9i)14-s + (13.7 − 83.7i)15-s + (−73.2 + 14.1i)16-s + (−33.5 − 73.4i)17-s + ⋯
L(s)  = 1  + (−1.33 + 0.0636i)2-s + (0.563 + 0.825i)3-s + (0.788 − 0.0752i)4-s + (−1.05 − 1.00i)5-s + (−0.806 − 1.06i)6-s + (0.172 + 0.892i)7-s + (0.276 − 0.0396i)8-s + (−0.363 + 0.931i)9-s + (1.47 + 1.27i)10-s + (−0.124 + 0.0639i)11-s + (0.506 + 0.608i)12-s + (−0.681 − 0.131i)13-s + (−0.286 − 1.18i)14-s + (0.236 − 1.44i)15-s + (−1.14 + 0.220i)16-s + (−0.478 − 1.04i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.665 + 0.746i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.665 + 0.746i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(207\)    =    \(3^{2} \cdot 23\)
Sign: $0.665 + 0.746i$
Analytic conductor: \(12.2133\)
Root analytic conductor: \(3.49476\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{207} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 207,\ (\ :3/2),\ 0.665 + 0.746i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.495080 - 0.221726i\)
\(L(\frac12)\) \(\approx\) \(0.495080 - 0.221726i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-2.93 - 4.29i)T \)
23 \( 1 + (-88.5 + 65.7i)T \)
good2 \( 1 + (3.78 - 0.180i)T + (7.96 - 0.760i)T^{2} \)
5 \( 1 + (11.8 + 11.2i)T + (5.94 + 124. i)T^{2} \)
7 \( 1 + (-3.18 - 16.5i)T + (-318. + 127. i)T^{2} \)
11 \( 1 + (4.52 - 2.33i)T + (772. - 1.08e3i)T^{2} \)
13 \( 1 + (31.9 + 6.15i)T + (2.03e3 + 816. i)T^{2} \)
17 \( 1 + (33.5 + 73.4i)T + (-3.21e3 + 3.71e3i)T^{2} \)
19 \( 1 + (-24.4 - 11.1i)T + (4.49e3 + 5.18e3i)T^{2} \)
29 \( 1 + (2.38 - 24.9i)T + (-2.39e4 - 4.61e3i)T^{2} \)
31 \( 1 + (-134. + 105. i)T + (7.02e3 - 2.89e4i)T^{2} \)
37 \( 1 + (-29.7 + 101. i)T + (-4.26e4 - 2.73e4i)T^{2} \)
41 \( 1 + (-242. + 254. i)T + (-3.27e3 - 6.88e4i)T^{2} \)
43 \( 1 + (-159. + 203. i)T + (-1.87e4 - 7.72e4i)T^{2} \)
47 \( 1 + (-177. - 102. i)T + (5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 + (28.5 + 32.8i)T + (-2.11e4 + 1.47e5i)T^{2} \)
59 \( 1 + (-140. + 730. i)T + (-1.90e5 - 7.63e4i)T^{2} \)
61 \( 1 + (148. - 369. i)T + (-1.64e5 - 1.56e5i)T^{2} \)
67 \( 1 + (196. - 381. i)T + (-1.74e5 - 2.44e5i)T^{2} \)
71 \( 1 + (607. + 944. i)T + (-1.48e5 + 3.25e5i)T^{2} \)
73 \( 1 + (-295. + 646. i)T + (-2.54e5 - 2.93e5i)T^{2} \)
79 \( 1 + (-1.01e3 + 350. i)T + (3.87e5 - 3.04e5i)T^{2} \)
83 \( 1 + (997. - 951. i)T + (2.72e4 - 5.71e5i)T^{2} \)
89 \( 1 + (88.4 - 615. i)T + (-6.76e5 - 1.98e5i)T^{2} \)
97 \( 1 + (-235. - 57.1i)T + (8.11e5 + 4.18e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.56540747329931646584996757121, −10.60262563276173110227805859386, −9.354120139161042997543737367655, −8.992993028177793877024603925715, −8.136599568233997239664694552885, −7.37791742507710450311087268767, −5.16913637718991005273238622842, −4.31302855821304779334708171503, −2.48268792517138432054811299175, −0.41031898412990088913690106149, 1.09403435418999106810250712253, 2.76886754153844163614373536746, 4.18367530575244772457300885701, 6.63476944682162529798057411329, 7.42857585129255643309784256960, 7.87563610477699074449108274433, 8.916141765508471807698070344567, 10.10049016181972755244015568363, 10.97206678365203243174298946912, 11.70815505843940203546924081350

Graph of the $Z$-function along the critical line