Properties

Label 2-208-1.1-c9-0-16
Degree $2$
Conductor $208$
Sign $-1$
Analytic cond. $107.127$
Root an. cond. $10.3502$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 264.·3-s − 498.·5-s − 8.28e3·7-s + 5.00e4·9-s − 7.76e4·11-s − 2.85e4·13-s + 1.31e5·15-s − 2.73e5·17-s + 4.36e5·19-s + 2.18e6·21-s − 1.02e6·23-s − 1.70e6·25-s − 8.01e6·27-s + 4.84e6·29-s + 9.42e6·31-s + 2.05e7·33-s + 4.12e6·35-s + 1.33e7·37-s + 7.54e6·39-s − 6.21e6·41-s + 1.50e7·43-s − 2.49e7·45-s − 3.65e7·47-s + 2.82e7·49-s + 7.23e7·51-s + 3.86e7·53-s + 3.86e7·55-s + ⋯
L(s)  = 1  − 1.88·3-s − 0.356·5-s − 1.30·7-s + 2.54·9-s − 1.59·11-s − 0.277·13-s + 0.670·15-s − 0.795·17-s + 0.769·19-s + 2.45·21-s − 0.764·23-s − 0.872·25-s − 2.90·27-s + 1.27·29-s + 1.83·31-s + 3.00·33-s + 0.464·35-s + 1.16·37-s + 0.521·39-s − 0.343·41-s + 0.672·43-s − 0.905·45-s − 1.09·47-s + 0.699·49-s + 1.49·51-s + 0.672·53-s + 0.570·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(208\)    =    \(2^{4} \cdot 13\)
Sign: $-1$
Analytic conductor: \(107.127\)
Root analytic conductor: \(10.3502\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 208,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + 2.85e4T \)
good3 \( 1 + 264.T + 1.96e4T^{2} \)
5 \( 1 + 498.T + 1.95e6T^{2} \)
7 \( 1 + 8.28e3T + 4.03e7T^{2} \)
11 \( 1 + 7.76e4T + 2.35e9T^{2} \)
17 \( 1 + 2.73e5T + 1.18e11T^{2} \)
19 \( 1 - 4.36e5T + 3.22e11T^{2} \)
23 \( 1 + 1.02e6T + 1.80e12T^{2} \)
29 \( 1 - 4.84e6T + 1.45e13T^{2} \)
31 \( 1 - 9.42e6T + 2.64e13T^{2} \)
37 \( 1 - 1.33e7T + 1.29e14T^{2} \)
41 \( 1 + 6.21e6T + 3.27e14T^{2} \)
43 \( 1 - 1.50e7T + 5.02e14T^{2} \)
47 \( 1 + 3.65e7T + 1.11e15T^{2} \)
53 \( 1 - 3.86e7T + 3.29e15T^{2} \)
59 \( 1 - 1.83e8T + 8.66e15T^{2} \)
61 \( 1 - 9.83e7T + 1.16e16T^{2} \)
67 \( 1 + 2.77e7T + 2.72e16T^{2} \)
71 \( 1 + 1.08e8T + 4.58e16T^{2} \)
73 \( 1 - 9.45e7T + 5.88e16T^{2} \)
79 \( 1 - 1.70e8T + 1.19e17T^{2} \)
83 \( 1 + 6.12e8T + 1.86e17T^{2} \)
89 \( 1 + 3.18e8T + 3.50e17T^{2} \)
97 \( 1 - 1.09e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.13423688610097035760327238312, −9.948059978777332932150833810110, −7.997295017931871535482652161582, −6.88827878702692421268372454480, −6.12351387615028155201947841419, −5.20517904320852800995217211984, −4.19997785431618932916601146637, −2.62441303640563966304326121304, −0.73044132105071408208733846015, 0, 0.73044132105071408208733846015, 2.62441303640563966304326121304, 4.19997785431618932916601146637, 5.20517904320852800995217211984, 6.12351387615028155201947841419, 6.88827878702692421268372454480, 7.997295017931871535482652161582, 9.948059978777332932150833810110, 10.13423688610097035760327238312

Graph of the $Z$-function along the critical line