Properties

Label 2-208-1.1-c9-0-32
Degree $2$
Conductor $208$
Sign $1$
Analytic cond. $107.127$
Root an. cond. $10.3502$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 176.·3-s + 1.80e3·5-s + 387.·7-s + 1.14e4·9-s + 7.55e4·11-s + 2.85e4·13-s + 3.17e5·15-s + 3.09e5·17-s − 3.67e5·19-s + 6.83e4·21-s − 6.44e4·23-s + 1.29e6·25-s − 1.45e6·27-s + 2.76e6·29-s + 1.47e6·31-s + 1.33e7·33-s + 6.97e5·35-s − 1.16e6·37-s + 5.03e6·39-s + 3.80e6·41-s + 2.53e7·43-s + 2.06e7·45-s + 2.93e7·47-s − 4.02e7·49-s + 5.45e7·51-s − 7.12e7·53-s + 1.36e8·55-s + ⋯
L(s)  = 1  + 1.25·3-s + 1.28·5-s + 0.0609·7-s + 0.581·9-s + 1.55·11-s + 0.277·13-s + 1.62·15-s + 0.898·17-s − 0.647·19-s + 0.0766·21-s − 0.0479·23-s + 0.661·25-s − 0.526·27-s + 0.726·29-s + 0.287·31-s + 1.95·33-s + 0.0786·35-s − 0.101·37-s + 0.348·39-s + 0.210·41-s + 1.12·43-s + 0.749·45-s + 0.878·47-s − 0.996·49-s + 1.12·51-s − 1.24·53-s + 2.00·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(208\)    =    \(2^{4} \cdot 13\)
Sign: $1$
Analytic conductor: \(107.127\)
Root analytic conductor: \(10.3502\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 208,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(5.519515604\)
\(L(\frac12)\) \(\approx\) \(5.519515604\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 - 2.85e4T \)
good3 \( 1 - 176.T + 1.96e4T^{2} \)
5 \( 1 - 1.80e3T + 1.95e6T^{2} \)
7 \( 1 - 387.T + 4.03e7T^{2} \)
11 \( 1 - 7.55e4T + 2.35e9T^{2} \)
17 \( 1 - 3.09e5T + 1.18e11T^{2} \)
19 \( 1 + 3.67e5T + 3.22e11T^{2} \)
23 \( 1 + 6.44e4T + 1.80e12T^{2} \)
29 \( 1 - 2.76e6T + 1.45e13T^{2} \)
31 \( 1 - 1.47e6T + 2.64e13T^{2} \)
37 \( 1 + 1.16e6T + 1.29e14T^{2} \)
41 \( 1 - 3.80e6T + 3.27e14T^{2} \)
43 \( 1 - 2.53e7T + 5.02e14T^{2} \)
47 \( 1 - 2.93e7T + 1.11e15T^{2} \)
53 \( 1 + 7.12e7T + 3.29e15T^{2} \)
59 \( 1 - 3.11e7T + 8.66e15T^{2} \)
61 \( 1 - 1.00e8T + 1.16e16T^{2} \)
67 \( 1 + 6.31e7T + 2.72e16T^{2} \)
71 \( 1 + 2.79e8T + 4.58e16T^{2} \)
73 \( 1 + 2.78e8T + 5.88e16T^{2} \)
79 \( 1 - 2.42e8T + 1.19e17T^{2} \)
83 \( 1 - 5.43e8T + 1.86e17T^{2} \)
89 \( 1 - 2.08e8T + 3.50e17T^{2} \)
97 \( 1 + 2.50e7T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.43543491503022066218020320841, −9.474004617389354891570876462333, −8.984687789547394855422944299675, −7.972427541781677083608738527383, −6.64031128409990674918143356249, −5.76956292317951199464146252911, −4.21351755944862401377473298911, −3.10730659873043153609009149819, −2.03375664544225356500983203018, −1.17078673870739115676480532859, 1.17078673870739115676480532859, 2.03375664544225356500983203018, 3.10730659873043153609009149819, 4.21351755944862401377473298911, 5.76956292317951199464146252911, 6.64031128409990674918143356249, 7.972427541781677083608738527383, 8.984687789547394855422944299675, 9.474004617389354891570876462333, 10.43543491503022066218020320841

Graph of the $Z$-function along the critical line