Properties

Label 2-208-1.1-c9-0-35
Degree $2$
Conductor $208$
Sign $1$
Analytic cond. $107.127$
Root an. cond. $10.3502$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 273·3-s + 1.01e3·5-s − 3.95e3·7-s + 5.48e4·9-s + 5.09e4·11-s − 2.85e4·13-s + 2.77e5·15-s + 5.09e5·17-s + 6.26e5·19-s − 1.07e6·21-s − 6.53e5·23-s − 9.22e5·25-s + 9.59e6·27-s − 4.94e6·29-s − 4.07e6·31-s + 1.39e7·33-s − 4.01e6·35-s + 2.34e6·37-s − 7.79e6·39-s − 1.33e7·41-s + 7.83e6·43-s + 5.56e7·45-s + 3.96e7·47-s − 2.47e7·49-s + 1.39e8·51-s + 7.32e7·53-s + 5.17e7·55-s + ⋯
L(s)  = 1  + 1.94·3-s + 0.726·5-s − 0.622·7-s + 2.78·9-s + 1.05·11-s − 0.277·13-s + 1.41·15-s + 1.48·17-s + 1.10·19-s − 1.21·21-s − 0.486·23-s − 0.472·25-s + 3.47·27-s − 1.29·29-s − 0.791·31-s + 2.04·33-s − 0.452·35-s + 0.206·37-s − 0.539·39-s − 0.737·41-s + 0.349·43-s + 2.02·45-s + 1.18·47-s − 0.612·49-s + 2.88·51-s + 1.27·53-s + 0.762·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(208\)    =    \(2^{4} \cdot 13\)
Sign: $1$
Analytic conductor: \(107.127\)
Root analytic conductor: \(10.3502\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 208,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(6.172217825\)
\(L(\frac12)\) \(\approx\) \(6.172217825\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + p^{4} T \)
good3 \( 1 - 91 p T + p^{9} T^{2} \)
5 \( 1 - 203 p T + p^{9} T^{2} \)
7 \( 1 + 565 p T + p^{9} T^{2} \)
11 \( 1 - 50998 T + p^{9} T^{2} \)
17 \( 1 - 509757 T + p^{9} T^{2} \)
19 \( 1 - 626574 T + p^{9} T^{2} \)
23 \( 1 + 653524 T + p^{9} T^{2} \)
29 \( 1 + 4943006 T + p^{9} T^{2} \)
31 \( 1 + 4071700 T + p^{9} T^{2} \)
37 \( 1 - 2348883 T + p^{9} T^{2} \)
41 \( 1 + 13350960 T + p^{9} T^{2} \)
43 \( 1 - 7834847 T + p^{9} T^{2} \)
47 \( 1 - 39637681 T + p^{9} T^{2} \)
53 \( 1 - 73200924 T + p^{9} T^{2} \)
59 \( 1 - 141141614 T + p^{9} T^{2} \)
61 \( 1 + 132061256 T + p^{9} T^{2} \)
67 \( 1 - 185673110 T + p^{9} T^{2} \)
71 \( 1 + 224452625 T + p^{9} T^{2} \)
73 \( 1 + 2363338 p T + p^{9} T^{2} \)
79 \( 1 - 643288156 T + p^{9} T^{2} \)
83 \( 1 + 720077280 T + p^{9} T^{2} \)
89 \( 1 + 73028106 T + p^{9} T^{2} \)
97 \( 1 + 15879778 T + p^{9} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.11556112534563397192721053078, −9.595724581033824066988389715925, −9.004143648629742625470849020360, −7.79167619409787277502681973804, −7.04453150797097506971100252588, −5.64436082348565056596482386290, −3.91746553735217312637355169837, −3.26384775424946162139280200641, −2.11826677133408916463588941064, −1.20245072118698497365043266763, 1.20245072118698497365043266763, 2.11826677133408916463588941064, 3.26384775424946162139280200641, 3.91746553735217312637355169837, 5.64436082348565056596482386290, 7.04453150797097506971100252588, 7.79167619409787277502681973804, 9.004143648629742625470849020360, 9.595724581033824066988389715925, 10.11556112534563397192721053078

Graph of the $Z$-function along the critical line