L(s) = 1 | − 1.56·3-s − 1.56i·5-s − 0.438i·7-s − 0.561·9-s − 5.12i·11-s + (0.561 − 3.56i)13-s + 2.43i·15-s − 3.56·17-s − 2i·19-s + 0.684i·21-s + 3.12·23-s + 2.56·25-s + 5.56·27-s − 5.12·29-s + 5.12i·31-s + ⋯ |
L(s) = 1 | − 0.901·3-s − 0.698i·5-s − 0.165i·7-s − 0.187·9-s − 1.54i·11-s + (0.155 − 0.987i)13-s + 0.629i·15-s − 0.863·17-s − 0.458i·19-s + 0.149i·21-s + 0.651·23-s + 0.512·25-s + 1.07·27-s − 0.951·29-s + 0.920i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.155 + 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.155 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.468554 - 0.548219i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.468554 - 0.548219i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-0.561 + 3.56i)T \) |
good | 3 | \( 1 + 1.56T + 3T^{2} \) |
| 5 | \( 1 + 1.56iT - 5T^{2} \) |
| 7 | \( 1 + 0.438iT - 7T^{2} \) |
| 11 | \( 1 + 5.12iT - 11T^{2} \) |
| 17 | \( 1 + 3.56T + 17T^{2} \) |
| 19 | \( 1 + 2iT - 19T^{2} \) |
| 23 | \( 1 - 3.12T + 23T^{2} \) |
| 29 | \( 1 + 5.12T + 29T^{2} \) |
| 31 | \( 1 - 5.12iT - 31T^{2} \) |
| 37 | \( 1 - 9.56iT - 37T^{2} \) |
| 41 | \( 1 + 8iT - 41T^{2} \) |
| 43 | \( 1 + 9.56T + 43T^{2} \) |
| 47 | \( 1 - 7.56iT - 47T^{2} \) |
| 53 | \( 1 - 12.2T + 53T^{2} \) |
| 59 | \( 1 + 10iT - 59T^{2} \) |
| 61 | \( 1 - 2.87T + 61T^{2} \) |
| 67 | \( 1 - 9.12iT - 67T^{2} \) |
| 71 | \( 1 + 6.68iT - 71T^{2} \) |
| 73 | \( 1 + 9.36iT - 73T^{2} \) |
| 79 | \( 1 - 11.1T + 79T^{2} \) |
| 83 | \( 1 + 8.24iT - 83T^{2} \) |
| 89 | \( 1 + 3.12iT - 89T^{2} \) |
| 97 | \( 1 - 6.24iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.01213078717127680391296639029, −11.11138788263104641100889346134, −10.54343700672338964060102433609, −8.945106442960110903944438951950, −8.342872319307089119756477996582, −6.77588611208347028386675194576, −5.69588013458124994887251510723, −4.92739199494164754532049910346, −3.21363377967580390312145810641, −0.69192462608921522235827333748,
2.24747092535608378802647047353, 4.15082296394663614773849374791, 5.36112109606811661327052679404, 6.58775575131870785047016559507, 7.22985179894940092914701658185, 8.820820666356372044886541583390, 9.880899507032189909314234855502, 10.90602926067203601992047800609, 11.58329899034603382537160198332, 12.43783693583942543034238056687