L(s) = 1 | + (−1 + 1.73i)3-s − 3·5-s + (−2 − 3.46i)7-s + (−0.499 − 0.866i)9-s + (−3.5 − 0.866i)13-s + (3 − 5.19i)15-s + (−1.5 − 2.59i)17-s + (1 + 1.73i)19-s + 7.99·21-s + (−3 + 5.19i)23-s + 4·25-s − 4.00·27-s + (−4.5 + 7.79i)29-s − 2·31-s + (6 + 10.3i)35-s + ⋯ |
L(s) = 1 | + (−0.577 + 0.999i)3-s − 1.34·5-s + (−0.755 − 1.30i)7-s + (−0.166 − 0.288i)9-s + (−0.970 − 0.240i)13-s + (0.774 − 1.34i)15-s + (−0.363 − 0.630i)17-s + (0.229 + 0.397i)19-s + 1.74·21-s + (−0.625 + 1.08i)23-s + 0.800·25-s − 0.769·27-s + (−0.835 + 1.44i)29-s − 0.359·31-s + (1.01 + 1.75i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.859 + 0.511i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.859 + 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (3.5 + 0.866i)T \) |
good | 3 | \( 1 + (1 - 1.73i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 3T + 5T^{2} \) |
| 7 | \( 1 + (2 + 3.46i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.5 + 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1 - 1.73i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3 - 5.19i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.5 - 7.79i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 2T + 31T^{2} \) |
| 37 | \( 1 + (-3.5 + 6.06i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.5 - 2.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2 + 3.46i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 6T + 47T^{2} \) |
| 53 | \( 1 - 9T + 53T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.5 + 4.33i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1 + 1.73i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3 + 5.19i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + T + 73T^{2} \) |
| 79 | \( 1 - 4T + 79T^{2} \) |
| 83 | \( 1 + 12T + 83T^{2} \) |
| 89 | \( 1 + (3 - 5.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (7 + 12.1i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.76723313813513363110487570734, −10.95181154227276611127910041209, −10.18302904325864607439820242012, −9.323751804597702879511898195565, −7.64552445454731386284228952085, −7.14079469191060000414280246190, −5.37807324050338824368919403796, −4.21980828304961815269465349177, −3.53353645421220538809057009693, 0,
2.47848947415462684216597667230, 4.16016509383550049891584683159, 5.74529536527733475310763539183, 6.69129028357017168615477371580, 7.63768284863862900034135019395, 8.643291408338096958006842452163, 9.814504439695192036163287981354, 11.35007561437006784350373566171, 12.01780262806743103088272019846