Properties

Label 2-208725-1.1-c1-0-27
Degree $2$
Conductor $208725$
Sign $1$
Analytic cond. $1666.67$
Root an. cond. $40.8249$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s + 7-s + 9-s − 2·12-s + 2·13-s + 4·16-s + 5·19-s + 21-s + 23-s + 27-s − 2·28-s − 8·29-s − 9·31-s − 2·36-s + 9·37-s + 2·39-s + 12·41-s + 4·43-s − 10·47-s + 4·48-s − 6·49-s − 4·52-s + 5·57-s + 12·59-s − 61-s + 63-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s + 0.377·7-s + 1/3·9-s − 0.577·12-s + 0.554·13-s + 16-s + 1.14·19-s + 0.218·21-s + 0.208·23-s + 0.192·27-s − 0.377·28-s − 1.48·29-s − 1.61·31-s − 1/3·36-s + 1.47·37-s + 0.320·39-s + 1.87·41-s + 0.609·43-s − 1.45·47-s + 0.577·48-s − 6/7·49-s − 0.554·52-s + 0.662·57-s + 1.56·59-s − 0.128·61-s + 0.125·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 208725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(208725\)    =    \(3 \cdot 5^{2} \cdot 11^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1666.67\)
Root analytic conductor: \(40.8249\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 208725,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.229169647\)
\(L(\frac12)\) \(\approx\) \(3.229169647\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
11 \( 1 \)
23 \( 1 - T \)
good2 \( 1 + p T^{2} \)
7 \( 1 - T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 + 9 T + p T^{2} \)
37 \( 1 - 9 T + p T^{2} \)
41 \( 1 - 12 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 10 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + T + p T^{2} \)
67 \( 1 + 3 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 3 T + p T^{2} \)
79 \( 1 - 7 T + p T^{2} \)
83 \( 1 - 14 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 + T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.03143663237434, −12.90119877011867, −12.17645062688734, −11.55554332198250, −11.08301628111818, −10.80655593344666, −10.01839093743901, −9.517868476646001, −9.254013975375158, −8.971402287366922, −8.201148007526677, −7.795455286750519, −7.593599878550114, −6.916844176146069, −6.112571512594518, −5.731088099455178, −5.129627608179232, −4.749157530233660, −4.052281539232892, −3.580025035547990, −3.310912174928073, −2.383939351806920, −1.842297857673982, −1.060211048073994, −0.5708118324782255, 0.5708118324782255, 1.060211048073994, 1.842297857673982, 2.383939351806920, 3.310912174928073, 3.580025035547990, 4.052281539232892, 4.749157530233660, 5.129627608179232, 5.731088099455178, 6.112571512594518, 6.916844176146069, 7.593599878550114, 7.795455286750519, 8.201148007526677, 8.971402287366922, 9.254013975375158, 9.517868476646001, 10.01839093743901, 10.80655593344666, 11.08301628111818, 11.55554332198250, 12.17645062688734, 12.90119877011867, 13.03143663237434

Graph of the $Z$-function along the critical line