L(s) = 1 | − 0.456·2-s − 0.835·3-s − 1.79·4-s + 0.221·5-s + 0.381·6-s + 4.69·7-s + 1.73·8-s − 2.30·9-s − 0.101·10-s − 11-s + 1.49·12-s + 5.89·13-s − 2.14·14-s − 0.185·15-s + 2.79·16-s + 7.06·17-s + 1.05·18-s + 19-s − 0.397·20-s − 3.92·21-s + 0.456·22-s + 1.06·23-s − 1.44·24-s − 4.95·25-s − 2.68·26-s + 4.42·27-s − 8.41·28-s + ⋯ |
L(s) = 1 | − 0.322·2-s − 0.482·3-s − 0.895·4-s + 0.0992·5-s + 0.155·6-s + 1.77·7-s + 0.612·8-s − 0.767·9-s − 0.0320·10-s − 0.301·11-s + 0.431·12-s + 1.63·13-s − 0.573·14-s − 0.0478·15-s + 0.698·16-s + 1.71·17-s + 0.247·18-s + 0.229·19-s − 0.0889·20-s − 0.856·21-s + 0.0973·22-s + 0.221·23-s − 0.295·24-s − 0.990·25-s − 0.527·26-s + 0.852·27-s − 1.59·28-s + ⋯ |
Λ(s)=(=(209s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(209s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.8845142238 |
L(21) |
≈ |
0.8845142238 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+T |
| 19 | 1−T |
good | 2 | 1+0.456T+2T2 |
| 3 | 1+0.835T+3T2 |
| 5 | 1−0.221T+5T2 |
| 7 | 1−4.69T+7T2 |
| 13 | 1−5.89T+13T2 |
| 17 | 1−7.06T+17T2 |
| 23 | 1−1.06T+23T2 |
| 29 | 1+7.62T+29T2 |
| 31 | 1−0.901T+31T2 |
| 37 | 1+2.71T+37T2 |
| 41 | 1−0.788T+41T2 |
| 43 | 1−0.714T+43T2 |
| 47 | 1−3.96T+47T2 |
| 53 | 1+9.69T+53T2 |
| 59 | 1+7.33T+59T2 |
| 61 | 1−8.15T+61T2 |
| 67 | 1−7.86T+67T2 |
| 71 | 1+3.13T+71T2 |
| 73 | 1+6.49T+73T2 |
| 79 | 1−12.0T+79T2 |
| 83 | 1−16.3T+83T2 |
| 89 | 1+12.9T+89T2 |
| 97 | 1−8.14T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.19523134593506336933721136825, −11.24315590331099936105207434402, −10.63960423743970911078648786137, −9.319308212683367048424991081905, −8.260618365977527678505227769444, −7.80739518562844672234277678145, −5.74970565770299766656927693801, −5.17842296779522439176261900762, −3.76566986960473015694358687349, −1.32305777517800720586171586944,
1.32305777517800720586171586944, 3.76566986960473015694358687349, 5.17842296779522439176261900762, 5.74970565770299766656927693801, 7.80739518562844672234277678145, 8.260618365977527678505227769444, 9.319308212683367048424991081905, 10.63960423743970911078648786137, 11.24315590331099936105207434402, 12.19523134593506336933721136825