Properties

Label 2-209-1.1-c1-0-2
Degree $2$
Conductor $209$
Sign $1$
Analytic cond. $1.66887$
Root an. cond. $1.29184$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.456·2-s − 0.835·3-s − 1.79·4-s + 0.221·5-s + 0.381·6-s + 4.69·7-s + 1.73·8-s − 2.30·9-s − 0.101·10-s − 11-s + 1.49·12-s + 5.89·13-s − 2.14·14-s − 0.185·15-s + 2.79·16-s + 7.06·17-s + 1.05·18-s + 19-s − 0.397·20-s − 3.92·21-s + 0.456·22-s + 1.06·23-s − 1.44·24-s − 4.95·25-s − 2.68·26-s + 4.42·27-s − 8.41·28-s + ⋯
L(s)  = 1  − 0.322·2-s − 0.482·3-s − 0.895·4-s + 0.0992·5-s + 0.155·6-s + 1.77·7-s + 0.612·8-s − 0.767·9-s − 0.0320·10-s − 0.301·11-s + 0.431·12-s + 1.63·13-s − 0.573·14-s − 0.0478·15-s + 0.698·16-s + 1.71·17-s + 0.247·18-s + 0.229·19-s − 0.0889·20-s − 0.856·21-s + 0.0973·22-s + 0.221·23-s − 0.295·24-s − 0.990·25-s − 0.527·26-s + 0.852·27-s − 1.59·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(209\)    =    \(11 \cdot 19\)
Sign: $1$
Analytic conductor: \(1.66887\)
Root analytic conductor: \(1.29184\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 209,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8845142238\)
\(L(\frac12)\) \(\approx\) \(0.8845142238\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + T \)
19 \( 1 - T \)
good2 \( 1 + 0.456T + 2T^{2} \)
3 \( 1 + 0.835T + 3T^{2} \)
5 \( 1 - 0.221T + 5T^{2} \)
7 \( 1 - 4.69T + 7T^{2} \)
13 \( 1 - 5.89T + 13T^{2} \)
17 \( 1 - 7.06T + 17T^{2} \)
23 \( 1 - 1.06T + 23T^{2} \)
29 \( 1 + 7.62T + 29T^{2} \)
31 \( 1 - 0.901T + 31T^{2} \)
37 \( 1 + 2.71T + 37T^{2} \)
41 \( 1 - 0.788T + 41T^{2} \)
43 \( 1 - 0.714T + 43T^{2} \)
47 \( 1 - 3.96T + 47T^{2} \)
53 \( 1 + 9.69T + 53T^{2} \)
59 \( 1 + 7.33T + 59T^{2} \)
61 \( 1 - 8.15T + 61T^{2} \)
67 \( 1 - 7.86T + 67T^{2} \)
71 \( 1 + 3.13T + 71T^{2} \)
73 \( 1 + 6.49T + 73T^{2} \)
79 \( 1 - 12.0T + 79T^{2} \)
83 \( 1 - 16.3T + 83T^{2} \)
89 \( 1 + 12.9T + 89T^{2} \)
97 \( 1 - 8.14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.19523134593506336933721136825, −11.24315590331099936105207434402, −10.63960423743970911078648786137, −9.319308212683367048424991081905, −8.260618365977527678505227769444, −7.80739518562844672234277678145, −5.74970565770299766656927693801, −5.17842296779522439176261900762, −3.76566986960473015694358687349, −1.32305777517800720586171586944, 1.32305777517800720586171586944, 3.76566986960473015694358687349, 5.17842296779522439176261900762, 5.74970565770299766656927693801, 7.80739518562844672234277678145, 8.260618365977527678505227769444, 9.319308212683367048424991081905, 10.63960423743970911078648786137, 11.24315590331099936105207434402, 12.19523134593506336933721136825

Graph of the $Z$-function along the critical line