L(s) = 1 | + (−1.28 + 0.936i)2-s + (0.935 + 2.87i)3-s + (0.166 − 0.511i)4-s + (−2.91 − 2.11i)5-s + (−3.90 − 2.83i)6-s + (0.0705 − 0.217i)7-s + (−0.719 − 2.21i)8-s + (−4.98 + 3.61i)9-s + 5.74·10-s + (−3.21 + 0.802i)11-s + 1.62·12-s + (−1.03 + 0.753i)13-s + (0.112 + 0.345i)14-s + (3.37 − 10.3i)15-s + (3.87 + 2.81i)16-s + (5.03 + 3.65i)17-s + ⋯ |
L(s) = 1 | + (−0.911 + 0.662i)2-s + (0.539 + 1.66i)3-s + (0.0831 − 0.255i)4-s + (−1.30 − 0.947i)5-s + (−1.59 − 1.15i)6-s + (0.0266 − 0.0820i)7-s + (−0.254 − 0.783i)8-s + (−1.66 + 1.20i)9-s + 1.81·10-s + (−0.970 + 0.242i)11-s + 0.470·12-s + (−0.287 + 0.209i)13-s + (0.0300 + 0.0924i)14-s + (0.870 − 2.67i)15-s + (0.968 + 0.703i)16-s + (1.22 + 0.887i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.660 + 0.750i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.660 + 0.750i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.144097 - 0.318825i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.144097 - 0.318825i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + (3.21 - 0.802i)T \) |
| 19 | \( 1 + (-0.309 - 0.951i)T \) |
good | 2 | \( 1 + (1.28 - 0.936i)T + (0.618 - 1.90i)T^{2} \) |
| 3 | \( 1 + (-0.935 - 2.87i)T + (-2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (2.91 + 2.11i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.0705 + 0.217i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (1.03 - 0.753i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-5.03 - 3.65i)T + (5.25 + 16.1i)T^{2} \) |
| 23 | \( 1 + 7.86T + 23T^{2} \) |
| 29 | \( 1 + (-0.00257 + 0.00791i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (6.07 - 4.41i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.24 + 3.82i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.87 - 5.76i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 2.42T + 43T^{2} \) |
| 47 | \( 1 + (0.516 + 1.58i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-0.124 + 0.0902i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-1.70 + 5.23i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-7.70 - 5.59i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 12.8T + 67T^{2} \) |
| 71 | \( 1 + (-3.08 - 2.24i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (2.11 - 6.52i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-8.87 + 6.44i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-0.136 - 0.0989i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 1.97T + 89T^{2} \) |
| 97 | \( 1 + (-0.0190 + 0.0138i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.82701912707860302798441598162, −11.95194207340306658749266016817, −10.55529756326075435262975299750, −9.860146960597007733833334055602, −8.916108242829931740715091314693, −8.118639824527110591514646610299, −7.66471480565363960355127297392, −5.50366175334161531231603335943, −4.27705939552346878204024169958, −3.53237525374661053024848961624,
0.36430052517561302172726081913, 2.29030345221075216978373069044, 3.24601747575296114073070847422, 5.74188382817937322479465567258, 7.27685381709797315370975265312, 7.76594054998996381906054626785, 8.433539664110856089907361930907, 9.846840075920903888485957897785, 10.94358467143805940793968075795, 11.82432771271426749023855879819