L(s) = 1 | + (−1.28 + 0.936i)2-s + (0.935 + 2.87i)3-s + (0.166 − 0.511i)4-s + (−2.91 − 2.11i)5-s + (−3.90 − 2.83i)6-s + (0.0705 − 0.217i)7-s + (−0.719 − 2.21i)8-s + (−4.98 + 3.61i)9-s + 5.74·10-s + (−3.21 + 0.802i)11-s + 1.62·12-s + (−1.03 + 0.753i)13-s + (0.112 + 0.345i)14-s + (3.37 − 10.3i)15-s + (3.87 + 2.81i)16-s + (5.03 + 3.65i)17-s + ⋯ |
L(s) = 1 | + (−0.911 + 0.662i)2-s + (0.539 + 1.66i)3-s + (0.0831 − 0.255i)4-s + (−1.30 − 0.947i)5-s + (−1.59 − 1.15i)6-s + (0.0266 − 0.0820i)7-s + (−0.254 − 0.783i)8-s + (−1.66 + 1.20i)9-s + 1.81·10-s + (−0.970 + 0.242i)11-s + 0.470·12-s + (−0.287 + 0.209i)13-s + (0.0300 + 0.0924i)14-s + (0.870 − 2.67i)15-s + (0.968 + 0.703i)16-s + (1.22 + 0.887i)17-s + ⋯ |
Λ(s)=(=(209s/2ΓC(s)L(s)(−0.660+0.750i)Λ(2−s)
Λ(s)=(=(209s/2ΓC(s+1/2)L(s)(−0.660+0.750i)Λ(1−s)
Degree: |
2 |
Conductor: |
209
= 11⋅19
|
Sign: |
−0.660+0.750i
|
Analytic conductor: |
1.66887 |
Root analytic conductor: |
1.29184 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ209(58,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 209, ( :1/2), −0.660+0.750i)
|
Particular Values
L(1) |
≈ |
0.144097−0.318825i |
L(21) |
≈ |
0.144097−0.318825i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+(3.21−0.802i)T |
| 19 | 1+(−0.309−0.951i)T |
good | 2 | 1+(1.28−0.936i)T+(0.618−1.90i)T2 |
| 3 | 1+(−0.935−2.87i)T+(−2.42+1.76i)T2 |
| 5 | 1+(2.91+2.11i)T+(1.54+4.75i)T2 |
| 7 | 1+(−0.0705+0.217i)T+(−5.66−4.11i)T2 |
| 13 | 1+(1.03−0.753i)T+(4.01−12.3i)T2 |
| 17 | 1+(−5.03−3.65i)T+(5.25+16.1i)T2 |
| 23 | 1+7.86T+23T2 |
| 29 | 1+(−0.00257+0.00791i)T+(−23.4−17.0i)T2 |
| 31 | 1+(6.07−4.41i)T+(9.57−29.4i)T2 |
| 37 | 1+(−1.24+3.82i)T+(−29.9−21.7i)T2 |
| 41 | 1+(−1.87−5.76i)T+(−33.1+24.0i)T2 |
| 43 | 1+2.42T+43T2 |
| 47 | 1+(0.516+1.58i)T+(−38.0+27.6i)T2 |
| 53 | 1+(−0.124+0.0902i)T+(16.3−50.4i)T2 |
| 59 | 1+(−1.70+5.23i)T+(−47.7−34.6i)T2 |
| 61 | 1+(−7.70−5.59i)T+(18.8+58.0i)T2 |
| 67 | 1+12.8T+67T2 |
| 71 | 1+(−3.08−2.24i)T+(21.9+67.5i)T2 |
| 73 | 1+(2.11−6.52i)T+(−59.0−42.9i)T2 |
| 79 | 1+(−8.87+6.44i)T+(24.4−75.1i)T2 |
| 83 | 1+(−0.136−0.0989i)T+(25.6+78.9i)T2 |
| 89 | 1+1.97T+89T2 |
| 97 | 1+(−0.0190+0.0138i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.82701912707860302798441598162, −11.95194207340306658749266016817, −10.55529756326075435262975299750, −9.860146960597007733833334055602, −8.916108242829931740715091314693, −8.118639824527110591514646610299, −7.66471480565363960355127297392, −5.50366175334161531231603335943, −4.27705939552346878204024169958, −3.53237525374661053024848961624,
0.36430052517561302172726081913, 2.29030345221075216978373069044, 3.24601747575296114073070847422, 5.74188382817937322479465567258, 7.27685381709797315370975265312, 7.76594054998996381906054626785, 8.433539664110856089907361930907, 9.846840075920903888485957897785, 10.94358467143805940793968075795, 11.82432771271426749023855879819