L(s) = 1 | + (−1.18 + 0.864i)2-s + (−0.639 − 1.96i)3-s + (0.0502 − 0.154i)4-s + (0.989 + 0.718i)5-s + (2.46 + 1.78i)6-s + (−0.728 + 2.24i)7-s + (−0.834 − 2.56i)8-s + (−1.03 + 0.753i)9-s − 1.79·10-s + (3.28 + 0.479i)11-s − 0.336·12-s + (2.06 − 1.50i)13-s + (−1.07 − 3.29i)14-s + (0.782 − 2.40i)15-s + (3.47 + 2.52i)16-s + (5.81 + 4.22i)17-s + ⋯ |
L(s) = 1 | + (−0.841 + 0.611i)2-s + (−0.369 − 1.13i)3-s + (0.0251 − 0.0773i)4-s + (0.442 + 0.321i)5-s + (1.00 + 0.730i)6-s + (−0.275 + 0.847i)7-s + (−0.295 − 0.908i)8-s + (−0.345 + 0.251i)9-s − 0.568·10-s + (0.989 + 0.144i)11-s − 0.0971·12-s + (0.573 − 0.416i)13-s + (−0.286 − 0.881i)14-s + (0.201 − 0.621i)15-s + (0.869 + 0.631i)16-s + (1.40 + 1.02i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.896 - 0.443i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.896 - 0.443i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.749569 + 0.175321i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.749569 + 0.175321i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + (-3.28 - 0.479i)T \) |
| 19 | \( 1 + (-0.309 - 0.951i)T \) |
good | 2 | \( 1 + (1.18 - 0.864i)T + (0.618 - 1.90i)T^{2} \) |
| 3 | \( 1 + (0.639 + 1.96i)T + (-2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (-0.989 - 0.718i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (0.728 - 2.24i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-2.06 + 1.50i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-5.81 - 4.22i)T + (5.25 + 16.1i)T^{2} \) |
| 23 | \( 1 - 6.34T + 23T^{2} \) |
| 29 | \( 1 + (1.34 - 4.13i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (3.49 - 2.53i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-2.25 + 6.93i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-3.36 - 10.3i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 7.28T + 43T^{2} \) |
| 47 | \( 1 + (3.66 + 11.2i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (0.504 - 0.366i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.0443 + 0.136i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (4.33 + 3.15i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 4.80T + 67T^{2} \) |
| 71 | \( 1 + (2.65 + 1.93i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (0.682 - 2.09i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (6.95 - 5.05i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (4.83 + 3.51i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 10.0T + 89T^{2} \) |
| 97 | \( 1 + (-1.12 + 0.814i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.59471000201501407332134697401, −11.69131270631688254814310135142, −10.26536913102522906447413955310, −9.257108602961692844448645886600, −8.361562022966260147223592632114, −7.34291258980162346704368768257, −6.44261365935631967519894617458, −5.80363309874037569977914708919, −3.41968186120199046747053025971, −1.38694841499191491090714084908,
1.19486150149946947123931596337, 3.44928968536212069288417111523, 4.77867910442720727523813922218, 5.84663296464850856499260815033, 7.40577270716483326369156306120, 9.017275837066384870314198854774, 9.510060487535669508431034425510, 10.19872300734712040257834668017, 11.11886071658120121042360608876, 11.73245205186603294801165260099