L(s) = 1 | − 2·3-s − 26·7-s − 23·9-s + 28·11-s + 12·13-s − 64·17-s + 60·19-s + 52·21-s + 58·23-s + 100·27-s + 90·29-s + 128·31-s − 56·33-s + 236·37-s − 24·39-s + 242·41-s − 362·43-s − 226·47-s + 333·49-s + 128·51-s − 108·53-s − 120·57-s + 20·59-s + 542·61-s + 598·63-s + 434·67-s − 116·69-s + ⋯ |
L(s) = 1 | − 0.384·3-s − 1.40·7-s − 0.851·9-s + 0.767·11-s + 0.256·13-s − 0.913·17-s + 0.724·19-s + 0.540·21-s + 0.525·23-s + 0.712·27-s + 0.576·29-s + 0.741·31-s − 0.295·33-s + 1.04·37-s − 0.0985·39-s + 0.921·41-s − 1.28·43-s − 0.701·47-s + 0.970·49-s + 0.351·51-s − 0.279·53-s − 0.278·57-s + 0.0441·59-s + 1.13·61-s + 1.19·63-s + 0.791·67-s − 0.202·69-s + ⋯ |
Λ(s)=(=(400s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(400s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.152635686 |
L(21) |
≈ |
1.152635686 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+2T+p3T2 |
| 7 | 1+26T+p3T2 |
| 11 | 1−28T+p3T2 |
| 13 | 1−12T+p3T2 |
| 17 | 1+64T+p3T2 |
| 19 | 1−60T+p3T2 |
| 23 | 1−58T+p3T2 |
| 29 | 1−90T+p3T2 |
| 31 | 1−128T+p3T2 |
| 37 | 1−236T+p3T2 |
| 41 | 1−242T+p3T2 |
| 43 | 1+362T+p3T2 |
| 47 | 1+226T+p3T2 |
| 53 | 1+108T+p3T2 |
| 59 | 1−20T+p3T2 |
| 61 | 1−542T+p3T2 |
| 67 | 1−434T+p3T2 |
| 71 | 1−1128T+p3T2 |
| 73 | 1−632T+p3T2 |
| 79 | 1−720T+p3T2 |
| 83 | 1−478T+p3T2 |
| 89 | 1+490T+p3T2 |
| 97 | 1−1456T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.99384244587925400599830176806, −9.816565172266707057540172373269, −9.185645826282686450801510495935, −8.181782643830396162926701350027, −6.66858873074558629658346091442, −6.34713158720880303990299397279, −5.10755513074204629174673699580, −3.72181200667750156606665190485, −2.69188977380543605078092619993, −0.69824173013547367662006809369,
0.69824173013547367662006809369, 2.69188977380543605078092619993, 3.72181200667750156606665190485, 5.10755513074204629174673699580, 6.34713158720880303990299397279, 6.66858873074558629658346091442, 8.181782643830396162926701350027, 9.185645826282686450801510495935, 9.816565172266707057540172373269, 10.99384244587925400599830176806