L(s) = 1 | + (1.13 + 2.21i)3-s + (−0.139 − 2.23i)5-s + (−0.125 − 0.125i)7-s + (−1.88 + 2.59i)9-s + (3.73 + 5.14i)11-s + (0.413 + 2.61i)13-s + (4.79 − 2.83i)15-s + (3.67 + 1.87i)17-s + (−0.529 − 1.62i)19-s + (0.136 − 0.421i)21-s + (0.203 − 1.28i)23-s + (−4.96 + 0.621i)25-s + (−0.501 − 0.0794i)27-s + (−8.12 − 2.64i)29-s + (1.69 − 0.551i)31-s + ⋯ |
L(s) = 1 | + (0.652 + 1.28i)3-s + (−0.0622 − 0.998i)5-s + (−0.0475 − 0.0475i)7-s + (−0.627 + 0.864i)9-s + (1.12 + 1.55i)11-s + (0.114 + 0.723i)13-s + (1.23 − 0.731i)15-s + (0.891 + 0.454i)17-s + (−0.121 − 0.373i)19-s + (0.0298 − 0.0919i)21-s + (0.0425 − 0.268i)23-s + (−0.992 + 0.124i)25-s + (−0.0965 − 0.0152i)27-s + (−1.50 − 0.490i)29-s + (0.304 − 0.0989i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.464 - 0.885i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.464 - 0.885i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.47827 + 0.894149i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.47827 + 0.894149i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.139 + 2.23i)T \) |
good | 3 | \( 1 + (-1.13 - 2.21i)T + (-1.76 + 2.42i)T^{2} \) |
| 7 | \( 1 + (0.125 + 0.125i)T + 7iT^{2} \) |
| 11 | \( 1 + (-3.73 - 5.14i)T + (-3.39 + 10.4i)T^{2} \) |
| 13 | \( 1 + (-0.413 - 2.61i)T + (-12.3 + 4.01i)T^{2} \) |
| 17 | \( 1 + (-3.67 - 1.87i)T + (9.99 + 13.7i)T^{2} \) |
| 19 | \( 1 + (0.529 + 1.62i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + (-0.203 + 1.28i)T + (-21.8 - 7.10i)T^{2} \) |
| 29 | \( 1 + (8.12 + 2.64i)T + (23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-1.69 + 0.551i)T + (25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (-6.42 + 1.01i)T + (35.1 - 11.4i)T^{2} \) |
| 41 | \( 1 + (8.51 + 6.18i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + (-2.70 + 2.70i)T - 43iT^{2} \) |
| 47 | \( 1 + (9.15 - 4.66i)T + (27.6 - 38.0i)T^{2} \) |
| 53 | \( 1 + (-8.64 + 4.40i)T + (31.1 - 42.8i)T^{2} \) |
| 59 | \( 1 + (4.80 + 3.49i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (-6.89 + 5.00i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + (-1.50 + 2.95i)T + (-39.3 - 54.2i)T^{2} \) |
| 71 | \( 1 + (7.64 + 2.48i)T + (57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (1.62 + 0.256i)T + (69.4 + 22.5i)T^{2} \) |
| 79 | \( 1 + (2.78 - 8.57i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (-9.56 - 4.87i)T + (48.7 + 67.1i)T^{2} \) |
| 89 | \( 1 + (-0.221 - 0.305i)T + (-27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (4.08 + 8.01i)T + (-57.0 + 78.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.46006234961153961223927925060, −10.12361426433823864362831215960, −9.525337282439968383131728173637, −9.018058129993675392080446048272, −8.010636587256027396938444044347, −6.76877734014291368313075862314, −5.27319590693219223508566239915, −4.30889185830118886641707642789, −3.77897433679903852536967966752, −1.86300820522912989755183607168,
1.26905290318139920187791479281, 2.86876940834873235912507460317, 3.57327593618841218177305262031, 5.76685573878648905883480925399, 6.48454814624975689077934845401, 7.46030594318474630822653403105, 8.123275276621929058972356316380, 9.086322259266826826447003219311, 10.25184931383818879730310026285, 11.36143867415608032678139527670