L(s) = 1 | + (1.13 + 2.21i)3-s + (−0.139 − 2.23i)5-s + (−0.125 − 0.125i)7-s + (−1.88 + 2.59i)9-s + (3.73 + 5.14i)11-s + (0.413 + 2.61i)13-s + (4.79 − 2.83i)15-s + (3.67 + 1.87i)17-s + (−0.529 − 1.62i)19-s + (0.136 − 0.421i)21-s + (0.203 − 1.28i)23-s + (−4.96 + 0.621i)25-s + (−0.501 − 0.0794i)27-s + (−8.12 − 2.64i)29-s + (1.69 − 0.551i)31-s + ⋯ |
L(s) = 1 | + (0.652 + 1.28i)3-s + (−0.0622 − 0.998i)5-s + (−0.0475 − 0.0475i)7-s + (−0.627 + 0.864i)9-s + (1.12 + 1.55i)11-s + (0.114 + 0.723i)13-s + (1.23 − 0.731i)15-s + (0.891 + 0.454i)17-s + (−0.121 − 0.373i)19-s + (0.0298 − 0.0919i)21-s + (0.0425 − 0.268i)23-s + (−0.992 + 0.124i)25-s + (−0.0965 − 0.0152i)27-s + (−1.50 − 0.490i)29-s + (0.304 − 0.0989i)31-s + ⋯ |
Λ(s)=(=(400s/2ΓC(s)L(s)(0.464−0.885i)Λ(2−s)
Λ(s)=(=(400s/2ΓC(s+1/2)L(s)(0.464−0.885i)Λ(1−s)
Degree: |
2 |
Conductor: |
400
= 24⋅52
|
Sign: |
0.464−0.885i
|
Analytic conductor: |
3.19401 |
Root analytic conductor: |
1.78718 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ400(223,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 400, ( :1/2), 0.464−0.885i)
|
Particular Values
L(1) |
≈ |
1.47827+0.894149i |
L(21) |
≈ |
1.47827+0.894149i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.139+2.23i)T |
good | 3 | 1+(−1.13−2.21i)T+(−1.76+2.42i)T2 |
| 7 | 1+(0.125+0.125i)T+7iT2 |
| 11 | 1+(−3.73−5.14i)T+(−3.39+10.4i)T2 |
| 13 | 1+(−0.413−2.61i)T+(−12.3+4.01i)T2 |
| 17 | 1+(−3.67−1.87i)T+(9.99+13.7i)T2 |
| 19 | 1+(0.529+1.62i)T+(−15.3+11.1i)T2 |
| 23 | 1+(−0.203+1.28i)T+(−21.8−7.10i)T2 |
| 29 | 1+(8.12+2.64i)T+(23.4+17.0i)T2 |
| 31 | 1+(−1.69+0.551i)T+(25.0−18.2i)T2 |
| 37 | 1+(−6.42+1.01i)T+(35.1−11.4i)T2 |
| 41 | 1+(8.51+6.18i)T+(12.6+38.9i)T2 |
| 43 | 1+(−2.70+2.70i)T−43iT2 |
| 47 | 1+(9.15−4.66i)T+(27.6−38.0i)T2 |
| 53 | 1+(−8.64+4.40i)T+(31.1−42.8i)T2 |
| 59 | 1+(4.80+3.49i)T+(18.2+56.1i)T2 |
| 61 | 1+(−6.89+5.00i)T+(18.8−58.0i)T2 |
| 67 | 1+(−1.50+2.95i)T+(−39.3−54.2i)T2 |
| 71 | 1+(7.64+2.48i)T+(57.4+41.7i)T2 |
| 73 | 1+(1.62+0.256i)T+(69.4+22.5i)T2 |
| 79 | 1+(2.78−8.57i)T+(−63.9−46.4i)T2 |
| 83 | 1+(−9.56−4.87i)T+(48.7+67.1i)T2 |
| 89 | 1+(−0.221−0.305i)T+(−27.5+84.6i)T2 |
| 97 | 1+(4.08+8.01i)T+(−57.0+78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.46006234961153961223927925060, −10.12361426433823864362831215960, −9.525337282439968383131728173637, −9.018058129993675392080446048272, −8.010636587256027396938444044347, −6.76877734014291368313075862314, −5.27319590693219223508566239915, −4.30889185830118886641707642789, −3.77897433679903852536967966752, −1.86300820522912989755183607168,
1.26905290318139920187791479281, 2.86876940834873235912507460317, 3.57327593618841218177305262031, 5.76685573878648905883480925399, 6.48454814624975689077934845401, 7.46030594318474630822653403105, 8.123275276621929058972356316380, 9.086322259266826826447003219311, 10.25184931383818879730310026285, 11.36143867415608032678139527670