L(s) = 1 | + (−2.97 + 1.51i)3-s + (1.69 + 1.45i)5-s + (1.80 − 1.80i)7-s + (4.80 − 6.61i)9-s + (2.46 + 3.39i)11-s + (0.731 − 0.115i)13-s + (−7.26 − 1.76i)15-s + (−3.09 + 6.08i)17-s + (0.285 + 0.877i)19-s + (−2.63 + 8.10i)21-s + (−3.66 − 0.579i)23-s + (0.753 + 4.94i)25-s + (−2.70 + 17.0i)27-s + (−2.48 − 0.808i)29-s + (5.85 − 1.90i)31-s + ⋯ |
L(s) = 1 | + (−1.71 + 0.876i)3-s + (0.758 + 0.651i)5-s + (0.681 − 0.681i)7-s + (1.60 − 2.20i)9-s + (0.743 + 1.02i)11-s + (0.202 − 0.0321i)13-s + (−1.87 − 0.456i)15-s + (−0.751 + 1.47i)17-s + (0.0653 + 0.201i)19-s + (−0.574 + 1.76i)21-s + (−0.763 − 0.120i)23-s + (0.150 + 0.988i)25-s + (−0.520 + 3.28i)27-s + (−0.462 − 0.150i)29-s + (1.05 − 0.341i)31-s + ⋯ |
Λ(s)=(=(400s/2ΓC(s)L(s)(−0.0673−0.997i)Λ(2−s)
Λ(s)=(=(400s/2ΓC(s+1/2)L(s)(−0.0673−0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
400
= 24⋅52
|
Sign: |
−0.0673−0.997i
|
Analytic conductor: |
3.19401 |
Root analytic conductor: |
1.78718 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ400(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 400, ( :1/2), −0.0673−0.997i)
|
Particular Values
L(1) |
≈ |
0.640902+0.685645i |
L(21) |
≈ |
0.640902+0.685645i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−1.69−1.45i)T |
good | 3 | 1+(2.97−1.51i)T+(1.76−2.42i)T2 |
| 7 | 1+(−1.80+1.80i)T−7iT2 |
| 11 | 1+(−2.46−3.39i)T+(−3.39+10.4i)T2 |
| 13 | 1+(−0.731+0.115i)T+(12.3−4.01i)T2 |
| 17 | 1+(3.09−6.08i)T+(−9.99−13.7i)T2 |
| 19 | 1+(−0.285−0.877i)T+(−15.3+11.1i)T2 |
| 23 | 1+(3.66+0.579i)T+(21.8+7.10i)T2 |
| 29 | 1+(2.48+0.808i)T+(23.4+17.0i)T2 |
| 31 | 1+(−5.85+1.90i)T+(25.0−18.2i)T2 |
| 37 | 1+(0.443+2.79i)T+(−35.1+11.4i)T2 |
| 41 | 1+(−2.09−1.52i)T+(12.6+38.9i)T2 |
| 43 | 1+(−1.85−1.85i)T+43iT2 |
| 47 | 1+(−3.13−6.15i)T+(−27.6+38.0i)T2 |
| 53 | 1+(−0.786−1.54i)T+(−31.1+42.8i)T2 |
| 59 | 1+(−1.10−0.803i)T+(18.2+56.1i)T2 |
| 61 | 1+(6.13−4.45i)T+(18.8−58.0i)T2 |
| 67 | 1+(8.25+4.20i)T+(39.3+54.2i)T2 |
| 71 | 1+(−5.26−1.71i)T+(57.4+41.7i)T2 |
| 73 | 1+(−0.380+2.40i)T+(−69.4−22.5i)T2 |
| 79 | 1+(−1.89+5.82i)T+(−63.9−46.4i)T2 |
| 83 | 1+(1.10−2.16i)T+(−48.7−67.1i)T2 |
| 89 | 1+(5.88+8.09i)T+(−27.5+84.6i)T2 |
| 97 | 1+(−7.27+3.70i)T+(57.0−78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.25624733760191228408402063806, −10.60349567382711583631959929928, −10.09078369223113986770752214339, −9.202202339946898203303851038783, −7.47357624474988366148228234696, −6.39561029723586226346977303354, −5.93627030067282796501048034115, −4.58812780978632242961456764465, −4.00634676897108344556292119752, −1.56773512573196279765147817836,
0.845275558661012419551379080891, 2.09955271388581715263552075923, 4.63768812113616285565132745776, 5.41767974574921160181859832470, 6.11080705320614540937154628422, 6.95194931495880922631541077222, 8.234260705095642197344623692431, 9.190195327222392721681192214553, 10.39246067915401064771416873574, 11.46611459429946702837601117964