L(s) = 1 | + (−2.97 + 1.51i)3-s + (1.69 + 1.45i)5-s + (1.80 − 1.80i)7-s + (4.80 − 6.61i)9-s + (2.46 + 3.39i)11-s + (0.731 − 0.115i)13-s + (−7.26 − 1.76i)15-s + (−3.09 + 6.08i)17-s + (0.285 + 0.877i)19-s + (−2.63 + 8.10i)21-s + (−3.66 − 0.579i)23-s + (0.753 + 4.94i)25-s + (−2.70 + 17.0i)27-s + (−2.48 − 0.808i)29-s + (5.85 − 1.90i)31-s + ⋯ |
L(s) = 1 | + (−1.71 + 0.876i)3-s + (0.758 + 0.651i)5-s + (0.681 − 0.681i)7-s + (1.60 − 2.20i)9-s + (0.743 + 1.02i)11-s + (0.202 − 0.0321i)13-s + (−1.87 − 0.456i)15-s + (−0.751 + 1.47i)17-s + (0.0653 + 0.201i)19-s + (−0.574 + 1.76i)21-s + (−0.763 − 0.120i)23-s + (0.150 + 0.988i)25-s + (−0.520 + 3.28i)27-s + (−0.462 − 0.150i)29-s + (1.05 − 0.341i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0673 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0673 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.640902 + 0.685645i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.640902 + 0.685645i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1.69 - 1.45i)T \) |
good | 3 | \( 1 + (2.97 - 1.51i)T + (1.76 - 2.42i)T^{2} \) |
| 7 | \( 1 + (-1.80 + 1.80i)T - 7iT^{2} \) |
| 11 | \( 1 + (-2.46 - 3.39i)T + (-3.39 + 10.4i)T^{2} \) |
| 13 | \( 1 + (-0.731 + 0.115i)T + (12.3 - 4.01i)T^{2} \) |
| 17 | \( 1 + (3.09 - 6.08i)T + (-9.99 - 13.7i)T^{2} \) |
| 19 | \( 1 + (-0.285 - 0.877i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + (3.66 + 0.579i)T + (21.8 + 7.10i)T^{2} \) |
| 29 | \( 1 + (2.48 + 0.808i)T + (23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-5.85 + 1.90i)T + (25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (0.443 + 2.79i)T + (-35.1 + 11.4i)T^{2} \) |
| 41 | \( 1 + (-2.09 - 1.52i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + (-1.85 - 1.85i)T + 43iT^{2} \) |
| 47 | \( 1 + (-3.13 - 6.15i)T + (-27.6 + 38.0i)T^{2} \) |
| 53 | \( 1 + (-0.786 - 1.54i)T + (-31.1 + 42.8i)T^{2} \) |
| 59 | \( 1 + (-1.10 - 0.803i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (6.13 - 4.45i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + (8.25 + 4.20i)T + (39.3 + 54.2i)T^{2} \) |
| 71 | \( 1 + (-5.26 - 1.71i)T + (57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (-0.380 + 2.40i)T + (-69.4 - 22.5i)T^{2} \) |
| 79 | \( 1 + (-1.89 + 5.82i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (1.10 - 2.16i)T + (-48.7 - 67.1i)T^{2} \) |
| 89 | \( 1 + (5.88 + 8.09i)T + (-27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (-7.27 + 3.70i)T + (57.0 - 78.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.25624733760191228408402063806, −10.60349567382711583631959929928, −10.09078369223113986770752214339, −9.202202339946898203303851038783, −7.47357624474988366148228234696, −6.39561029723586226346977303354, −5.93627030067282796501048034115, −4.58812780978632242961456764465, −4.00634676897108344556292119752, −1.56773512573196279765147817836,
0.845275558661012419551379080891, 2.09955271388581715263552075923, 4.63768812113616285565132745776, 5.41767974574921160181859832470, 6.11080705320614540937154628422, 6.95194931495880922631541077222, 8.234260705095642197344623692431, 9.190195327222392721681192214553, 10.39246067915401064771416873574, 11.46611459429946702837601117964