L(s) = 1 | + (−4.12 + 4.12i)3-s + (−4.12 − 4.12i)7-s − 7i·9-s + 13.8i·11-s + (−57.1 − 57.1i)13-s + (57.1 − 57.1i)17-s + 96.9·19-s + 34·21-s + (−86.5 + 86.5i)23-s + (−82.4 − 82.4i)27-s − 174i·29-s + 193. i·31-s + (−57.1 − 57.1i)33-s + 471.·39-s + 252·41-s + ⋯ |
L(s) = 1 | + (−0.793 + 0.793i)3-s + (−0.222 − 0.222i)7-s − 0.259i·9-s + 0.379i·11-s + (−1.21 − 1.21i)13-s + (0.815 − 0.815i)17-s + 1.17·19-s + 0.353·21-s + (−0.784 + 0.784i)23-s + (−0.587 − 0.587i)27-s − 1.11i·29-s + 1.12i·31-s + (−0.301 − 0.301i)33-s + 1.93·39-s + 0.959·41-s + ⋯ |
Λ(s)=(=(400s/2ΓC(s)L(s)(0.999−0.0299i)Λ(4−s)
Λ(s)=(=(400s/2ΓC(s+3/2)L(s)(0.999−0.0299i)Λ(1−s)
Degree: |
2 |
Conductor: |
400
= 24⋅52
|
Sign: |
0.999−0.0299i
|
Analytic conductor: |
23.6007 |
Root analytic conductor: |
4.85806 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ400(143,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 400, ( :3/2), 0.999−0.0299i)
|
Particular Values
L(2) |
≈ |
1.137670289 |
L(21) |
≈ |
1.137670289 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(4.12−4.12i)T−27iT2 |
| 7 | 1+(4.12+4.12i)T+343iT2 |
| 11 | 1−13.8iT−1.33e3T2 |
| 13 | 1+(57.1+57.1i)T+2.19e3iT2 |
| 17 | 1+(−57.1+57.1i)T−4.91e3iT2 |
| 19 | 1−96.9T+6.85e3T2 |
| 23 | 1+(86.5−86.5i)T−1.21e4iT2 |
| 29 | 1+174iT−2.43e4T2 |
| 31 | 1−193.iT−2.97e4T2 |
| 37 | 1−5.06e4iT2 |
| 41 | 1−252T+6.89e4T2 |
| 43 | 1+(−202.+202.i)T−7.95e4iT2 |
| 47 | 1+(−284.−284.i)T+1.03e5iT2 |
| 53 | 1+(−399.−399.i)T+1.48e5iT2 |
| 59 | 1−872.T+2.05e5T2 |
| 61 | 1−56T+2.26e5T2 |
| 67 | 1+(317.+317.i)T+3.00e5iT2 |
| 71 | 1−387.iT−3.57e5T2 |
| 73 | 1+(−399.−399.i)T+3.89e5iT2 |
| 79 | 1−692.T+4.93e5T2 |
| 83 | 1+(−482.+482.i)T−5.71e5iT2 |
| 89 | 1−42iT−7.04e5T2 |
| 97 | 1+(−742.+742.i)T−9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.68216213906149723822769245919, −9.967957558908453862088550032969, −9.511933513366028345023304640152, −7.85338255611337026765345260785, −7.23779047412895047788286106579, −5.62835506009130131668222763975, −5.22500044995922650524957014862, −4.01479191856703598805837368881, −2.68788006440449560677194163062, −0.60115872762248519383357366364,
0.861274524639330186916238249525, 2.27932636958682651706552434294, 3.87076171167397399572503674270, 5.28077933714873573659792501898, 6.12278640708764119490572174552, 7.00623038333332482084730903801, 7.81913982425510558950411916909, 9.118063102231774951482887046528, 9.925959266229248336717263118807, 11.06292863118396382221597633199