Properties

Label 2-20e2-20.3-c3-0-11
Degree $2$
Conductor $400$
Sign $0.999 - 0.0299i$
Analytic cond. $23.6007$
Root an. cond. $4.85806$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4.12 + 4.12i)3-s + (−4.12 − 4.12i)7-s − 7i·9-s + 13.8i·11-s + (−57.1 − 57.1i)13-s + (57.1 − 57.1i)17-s + 96.9·19-s + 34·21-s + (−86.5 + 86.5i)23-s + (−82.4 − 82.4i)27-s − 174i·29-s + 193. i·31-s + (−57.1 − 57.1i)33-s + 471.·39-s + 252·41-s + ⋯
L(s)  = 1  + (−0.793 + 0.793i)3-s + (−0.222 − 0.222i)7-s − 0.259i·9-s + 0.379i·11-s + (−1.21 − 1.21i)13-s + (0.815 − 0.815i)17-s + 1.17·19-s + 0.353·21-s + (−0.784 + 0.784i)23-s + (−0.587 − 0.587i)27-s − 1.11i·29-s + 1.12i·31-s + (−0.301 − 0.301i)33-s + 1.93·39-s + 0.959·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0299i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0299i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $0.999 - 0.0299i$
Analytic conductor: \(23.6007\)
Root analytic conductor: \(4.85806\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{400} (143, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 400,\ (\ :3/2),\ 0.999 - 0.0299i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.137670289\)
\(L(\frac12)\) \(\approx\) \(1.137670289\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + (4.12 - 4.12i)T - 27iT^{2} \)
7 \( 1 + (4.12 + 4.12i)T + 343iT^{2} \)
11 \( 1 - 13.8iT - 1.33e3T^{2} \)
13 \( 1 + (57.1 + 57.1i)T + 2.19e3iT^{2} \)
17 \( 1 + (-57.1 + 57.1i)T - 4.91e3iT^{2} \)
19 \( 1 - 96.9T + 6.85e3T^{2} \)
23 \( 1 + (86.5 - 86.5i)T - 1.21e4iT^{2} \)
29 \( 1 + 174iT - 2.43e4T^{2} \)
31 \( 1 - 193. iT - 2.97e4T^{2} \)
37 \( 1 - 5.06e4iT^{2} \)
41 \( 1 - 252T + 6.89e4T^{2} \)
43 \( 1 + (-202. + 202. i)T - 7.95e4iT^{2} \)
47 \( 1 + (-284. - 284. i)T + 1.03e5iT^{2} \)
53 \( 1 + (-399. - 399. i)T + 1.48e5iT^{2} \)
59 \( 1 - 872.T + 2.05e5T^{2} \)
61 \( 1 - 56T + 2.26e5T^{2} \)
67 \( 1 + (317. + 317. i)T + 3.00e5iT^{2} \)
71 \( 1 - 387. iT - 3.57e5T^{2} \)
73 \( 1 + (-399. - 399. i)T + 3.89e5iT^{2} \)
79 \( 1 - 692.T + 4.93e5T^{2} \)
83 \( 1 + (-482. + 482. i)T - 5.71e5iT^{2} \)
89 \( 1 - 42iT - 7.04e5T^{2} \)
97 \( 1 + (-742. + 742. i)T - 9.12e5iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.68216213906149723822769245919, −9.967957558908453862088550032969, −9.511933513366028345023304640152, −7.85338255611337026765345260785, −7.23779047412895047788286106579, −5.62835506009130131668222763975, −5.22500044995922650524957014862, −4.01479191856703598805837368881, −2.68788006440449560677194163062, −0.60115872762248519383357366364, 0.861274524639330186916238249525, 2.27932636958682651706552434294, 3.87076171167397399572503674270, 5.28077933714873573659792501898, 6.12278640708764119490572174552, 7.00623038333332482084730903801, 7.81913982425510558950411916909, 9.118063102231774951482887046528, 9.925959266229248336717263118807, 11.06292863118396382221597633199

Graph of the $Z$-function along the critical line