L(s) = 1 | + (6.59 − 6.59i)3-s + (−17.4 − 17.4i)7-s − 59.9i·9-s + 1.16i·11-s + (−32.6 − 32.6i)13-s + (−90.9 + 90.9i)17-s + 131.·19-s − 229.·21-s + (−98.9 + 98.9i)23-s + (−217. − 217. i)27-s − 167. i·29-s + 60.1i·31-s + (7.71 + 7.71i)33-s + (193. − 193. i)37-s − 430.·39-s + ⋯ |
L(s) = 1 | + (1.26 − 1.26i)3-s + (−0.941 − 0.941i)7-s − 2.22i·9-s + 0.0320i·11-s + (−0.696 − 0.696i)13-s + (−1.29 + 1.29i)17-s + 1.58·19-s − 2.38·21-s + (−0.897 + 0.897i)23-s + (−1.54 − 1.54i)27-s − 1.07i·29-s + 0.348i·31-s + (0.0406 + 0.0406i)33-s + (0.859 − 0.859i)37-s − 1.76·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 + 0.0706i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.997 + 0.0706i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.802337800\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.802337800\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-6.59 + 6.59i)T - 27iT^{2} \) |
| 7 | \( 1 + (17.4 + 17.4i)T + 343iT^{2} \) |
| 11 | \( 1 - 1.16iT - 1.33e3T^{2} \) |
| 13 | \( 1 + (32.6 + 32.6i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 + (90.9 - 90.9i)T - 4.91e3iT^{2} \) |
| 19 | \( 1 - 131.T + 6.85e3T^{2} \) |
| 23 | \( 1 + (98.9 - 98.9i)T - 1.21e4iT^{2} \) |
| 29 | \( 1 + 167. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 60.1iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (-193. + 193. i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 - 28.7T + 6.89e4T^{2} \) |
| 43 | \( 1 + (-76.6 + 76.6i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + (176. + 176. i)T + 1.03e5iT^{2} \) |
| 53 | \( 1 + (327. + 327. i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 - 141.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 369.T + 2.26e5T^{2} \) |
| 67 | \( 1 + (-67.8 - 67.8i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 + 46.7iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (-141. - 141. i)T + 3.89e5iT^{2} \) |
| 79 | \( 1 + 1.03e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + (-498. + 498. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 + 1.53e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 + (1.20 - 1.20i)T - 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08348746188641124117509816235, −9.480718028812613641308927043989, −8.333910699416726171764187725289, −7.57387053519657637155649609761, −6.93651526024703157531445521275, −5.93707992099467121421854206336, −3.97777359571307356220570967164, −3.09314539331514450679861530567, −1.89470722733848088682460785841, −0.47753897841414488553544882585,
2.44917552105375092220994586503, 3.03144160203693231859556739043, 4.32147215299080993724362621057, 5.19016842886119302402683585690, 6.64657916294049540387242802639, 7.84177895032708379232204941587, 8.962872619063736021308676983288, 9.411348311806986119318865359039, 9.924702737770019727248920041684, 11.17379179429748893888960149783