L(s) = 1 | + (6.59 − 6.59i)3-s + (−17.4 − 17.4i)7-s − 59.9i·9-s + 1.16i·11-s + (−32.6 − 32.6i)13-s + (−90.9 + 90.9i)17-s + 131.·19-s − 229.·21-s + (−98.9 + 98.9i)23-s + (−217. − 217. i)27-s − 167. i·29-s + 60.1i·31-s + (7.71 + 7.71i)33-s + (193. − 193. i)37-s − 430.·39-s + ⋯ |
L(s) = 1 | + (1.26 − 1.26i)3-s + (−0.941 − 0.941i)7-s − 2.22i·9-s + 0.0320i·11-s + (−0.696 − 0.696i)13-s + (−1.29 + 1.29i)17-s + 1.58·19-s − 2.38·21-s + (−0.897 + 0.897i)23-s + (−1.54 − 1.54i)27-s − 1.07i·29-s + 0.348i·31-s + (0.0406 + 0.0406i)33-s + (0.859 − 0.859i)37-s − 1.76·39-s + ⋯ |
Λ(s)=(=(400s/2ΓC(s)L(s)(−0.997+0.0706i)Λ(4−s)
Λ(s)=(=(400s/2ΓC(s+3/2)L(s)(−0.997+0.0706i)Λ(1−s)
Degree: |
2 |
Conductor: |
400
= 24⋅52
|
Sign: |
−0.997+0.0706i
|
Analytic conductor: |
23.6007 |
Root analytic conductor: |
4.85806 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ400(143,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 400, ( :3/2), −0.997+0.0706i)
|
Particular Values
L(2) |
≈ |
1.802337800 |
L(21) |
≈ |
1.802337800 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(−6.59+6.59i)T−27iT2 |
| 7 | 1+(17.4+17.4i)T+343iT2 |
| 11 | 1−1.16iT−1.33e3T2 |
| 13 | 1+(32.6+32.6i)T+2.19e3iT2 |
| 17 | 1+(90.9−90.9i)T−4.91e3iT2 |
| 19 | 1−131.T+6.85e3T2 |
| 23 | 1+(98.9−98.9i)T−1.21e4iT2 |
| 29 | 1+167.iT−2.43e4T2 |
| 31 | 1−60.1iT−2.97e4T2 |
| 37 | 1+(−193.+193.i)T−5.06e4iT2 |
| 41 | 1−28.7T+6.89e4T2 |
| 43 | 1+(−76.6+76.6i)T−7.95e4iT2 |
| 47 | 1+(176.+176.i)T+1.03e5iT2 |
| 53 | 1+(327.+327.i)T+1.48e5iT2 |
| 59 | 1−141.T+2.05e5T2 |
| 61 | 1−369.T+2.26e5T2 |
| 67 | 1+(−67.8−67.8i)T+3.00e5iT2 |
| 71 | 1+46.7iT−3.57e5T2 |
| 73 | 1+(−141.−141.i)T+3.89e5iT2 |
| 79 | 1+1.03e3T+4.93e5T2 |
| 83 | 1+(−498.+498.i)T−5.71e5iT2 |
| 89 | 1+1.53e3iT−7.04e5T2 |
| 97 | 1+(1.20−1.20i)T−9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.08348746188641124117509816235, −9.480718028812613641308927043989, −8.333910699416726171764187725289, −7.57387053519657637155649609761, −6.93651526024703157531445521275, −5.93707992099467121421854206336, −3.97777359571307356220570967164, −3.09314539331514450679861530567, −1.89470722733848088682460785841, −0.47753897841414488553544882585,
2.44917552105375092220994586503, 3.03144160203693231859556739043, 4.32147215299080993724362621057, 5.19016842886119302402683585690, 6.64657916294049540387242802639, 7.84177895032708379232204941587, 8.962872619063736021308676983288, 9.411348311806986119318865359039, 9.924702737770019727248920041684, 11.17379179429748893888960149783