L(s) = 1 | + (−389. + 224. i)2-s + (−6.71e3 + 9.16e3i)3-s + (3.54e4 − 6.13e4i)4-s + (6.52e5 + 1.12e6i)5-s + (5.54e5 − 5.07e6i)6-s + (1.13e6 + 1.52e7i)7-s − 2.70e7i·8-s + (−3.89e7 − 1.23e8i)9-s + (−5.07e8 − 2.92e8i)10-s + (7.67e8 + 4.43e8i)11-s + (3.24e8 + 7.36e8i)12-s + 1.92e9i·13-s + (−3.86e9 − 5.66e9i)14-s + (−1.47e10 − 1.60e9i)15-s + (1.07e10 + 1.85e10i)16-s + (−1.05e10 + 1.83e10i)17-s + ⋯ |
L(s) = 1 | + (−1.07 + 0.620i)2-s + (−0.591 + 0.806i)3-s + (0.270 − 0.467i)4-s + (0.746 + 1.29i)5-s + (0.134 − 1.23i)6-s + (0.0747 + 0.997i)7-s − 0.570i·8-s + (−0.301 − 0.953i)9-s + (−1.60 − 0.926i)10-s + (1.07 + 0.623i)11-s + (0.217 + 0.494i)12-s + 0.653i·13-s + (−0.699 − 1.02i)14-s + (−1.48 − 0.162i)15-s + (0.624 + 1.08i)16-s + (−0.367 + 0.637i)17-s + ⋯ |
Λ(s)=(=(21s/2ΓC(s)L(s)(0.0926+0.995i)Λ(18−s)
Λ(s)=(=(21s/2ΓC(s+17/2)L(s)(0.0926+0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
21
= 3⋅7
|
Sign: |
0.0926+0.995i
|
Analytic conductor: |
38.4766 |
Root analytic conductor: |
6.20295 |
Motivic weight: |
17 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ21(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 21, ( :17/2), 0.0926+0.995i)
|
Particular Values
L(9) |
≈ |
0.7595443095 |
L(21) |
≈ |
0.7595443095 |
L(219) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(6.71e3−9.16e3i)T |
| 7 | 1+(−1.13e6−1.52e7i)T |
good | 2 | 1+(389.−224.i)T+(6.55e4−1.13e5i)T2 |
| 5 | 1+(−6.52e5−1.12e6i)T+(−3.81e11+6.60e11i)T2 |
| 11 | 1+(−7.67e8−4.43e8i)T+(2.52e17+4.37e17i)T2 |
| 13 | 1−1.92e9iT−8.65e18T2 |
| 17 | 1+(1.05e10−1.83e10i)T+(−4.13e20−7.16e20i)T2 |
| 19 | 1+(1.02e11−5.93e10i)T+(2.74e21−4.74e21i)T2 |
| 23 | 1+(2.29e11−1.32e11i)T+(7.05e22−1.22e23i)T2 |
| 29 | 1−2.01e12iT−7.25e24T2 |
| 31 | 1+(−1.38e12−7.99e11i)T+(1.12e25+1.95e25i)T2 |
| 37 | 1+(6.92e12+1.19e13i)T+(−2.28e26+3.95e26i)T2 |
| 41 | 1−4.36e13T+2.61e27T2 |
| 43 | 1+4.58e12T+5.87e27T2 |
| 47 | 1+(9.87e13+1.71e14i)T+(−1.33e28+2.30e28i)T2 |
| 53 | 1+(−6.00e14−3.46e14i)T+(1.02e29+1.77e29i)T2 |
| 59 | 1+(−1.85e14+3.21e14i)T+(−6.35e29−1.10e30i)T2 |
| 61 | 1+(1.54e15−8.90e14i)T+(1.12e30−1.94e30i)T2 |
| 67 | 1+(−1.02e15+1.76e15i)T+(−5.52e30−9.56e30i)T2 |
| 71 | 1−5.60e15iT−2.96e31T2 |
| 73 | 1+(−9.29e15−5.36e15i)T+(2.37e31+4.11e31i)T2 |
| 79 | 1+(6.38e15+1.10e16i)T+(−9.09e31+1.57e32i)T2 |
| 83 | 1−3.82e16T+4.21e32T2 |
| 89 | 1+(−3.67e16−6.36e16i)T+(−6.89e32+1.19e33i)T2 |
| 97 | 1+7.45e16iT−5.95e33T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.23506577871801557740116876778, −14.54482729743783137295114299655, −12.23365653196114838894636060719, −10.72810320885232847581357439720, −9.733590436513689645721901915550, −8.778514881812824285829852964582, −6.73250245850815798639312167042, −6.05773479606398236327301315424, −3.89100820202607032290236532250, −1.90434340722351658857077963479,
0.44494927004903053753905693619, 0.921022297231434398771283467317, 2.07072471702264489894218209926, 4.76214595221735092385552694121, 6.28489773819051555586006365743, 8.073669726664099352462172121805, 9.146972415605823820333998437107, 10.50354905779037299336444019863, 11.64337748386174819816825712207, 13.00878609223045732529946606613