L(s) = 1 | + (−0.124 + 0.214i)2-s + (1.5 + 2.59i)3-s + (3.96 + 6.87i)4-s + (6.21 − 10.7i)5-s − 0.744·6-s + (−18.4 − 1.73i)7-s − 3.95·8-s + (−4.5 + 7.79i)9-s + (1.54 + 2.67i)10-s + (−30.1 − 52.2i)11-s + (−11.9 + 20.6i)12-s + 36.4·13-s + (2.66 − 3.74i)14-s + 37.3·15-s + (−31.2 + 54.1i)16-s + (24.3 + 42.2i)17-s + ⋯ |
L(s) = 1 | + (−0.0438 + 0.0759i)2-s + (0.288 + 0.499i)3-s + (0.496 + 0.859i)4-s + (0.556 − 0.963i)5-s − 0.0506·6-s + (−0.995 − 0.0938i)7-s − 0.174·8-s + (−0.166 + 0.288i)9-s + (0.0487 + 0.0844i)10-s + (−0.826 − 1.43i)11-s + (−0.286 + 0.496i)12-s + 0.777·13-s + (0.0507 − 0.0715i)14-s + 0.642·15-s + (−0.488 + 0.846i)16-s + (0.347 + 0.602i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.880 - 0.473i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.880 - 0.473i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.18131 + 0.297209i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.18131 + 0.297209i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.5 - 2.59i)T \) |
| 7 | \( 1 + (18.4 + 1.73i)T \) |
good | 2 | \( 1 + (0.124 - 0.214i)T + (-4 - 6.92i)T^{2} \) |
| 5 | \( 1 + (-6.21 + 10.7i)T + (-62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (30.1 + 52.2i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 - 36.4T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-24.3 - 42.2i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-25.2 + 43.7i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (69.3 - 120. i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + 61.1T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-0.584 - 1.01i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (34.7 - 60.2i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 - 308.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 174.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (194. - 337. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (157. + 272. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (422. + 731. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-169. + 293. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-485. - 841. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 98.4T + 3.57e5T^{2} \) |
| 73 | \( 1 + (355. + 615. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-243. + 421. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 - 605.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (109. - 188. i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + 782.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.42840234217564586993226542844, −16.23055622637122962884479404939, −15.89661175917865023681722252124, −13.58223739559200347317134805619, −12.82073607332888322503371272846, −11.05263346182170649797912524248, −9.332721178444415412381209580040, −8.119892828999079687461125020766, −5.88817185904019278055773599757, −3.38228381260687071477557465693,
2.48372776722578918437887004989, 6.03416664316828508044427140253, 7.18989616090266510259301698319, 9.670961843150247179522507042355, 10.57294761895014104508982770498, 12.40634587593307672436147169363, 13.85550663964881382335246218730, 14.94093638176937574859696846384, 16.09129734937073203102080876666, 18.18892700008772531938131117749