L(s) = 1 | + (−0.124 + 0.214i)2-s + (1.5 + 2.59i)3-s + (3.96 + 6.87i)4-s + (6.21 − 10.7i)5-s − 0.744·6-s + (−18.4 − 1.73i)7-s − 3.95·8-s + (−4.5 + 7.79i)9-s + (1.54 + 2.67i)10-s + (−30.1 − 52.2i)11-s + (−11.9 + 20.6i)12-s + 36.4·13-s + (2.66 − 3.74i)14-s + 37.3·15-s + (−31.2 + 54.1i)16-s + (24.3 + 42.2i)17-s + ⋯ |
L(s) = 1 | + (−0.0438 + 0.0759i)2-s + (0.288 + 0.499i)3-s + (0.496 + 0.859i)4-s + (0.556 − 0.963i)5-s − 0.0506·6-s + (−0.995 − 0.0938i)7-s − 0.174·8-s + (−0.166 + 0.288i)9-s + (0.0487 + 0.0844i)10-s + (−0.826 − 1.43i)11-s + (−0.286 + 0.496i)12-s + 0.777·13-s + (0.0507 − 0.0715i)14-s + 0.642·15-s + (−0.488 + 0.846i)16-s + (0.347 + 0.602i)17-s + ⋯ |
Λ(s)=(=(21s/2ΓC(s)L(s)(0.880−0.473i)Λ(4−s)
Λ(s)=(=(21s/2ΓC(s+3/2)L(s)(0.880−0.473i)Λ(1−s)
Degree: |
2 |
Conductor: |
21
= 3⋅7
|
Sign: |
0.880−0.473i
|
Analytic conductor: |
1.23904 |
Root analytic conductor: |
1.11312 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ21(16,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 21, ( :3/2), 0.880−0.473i)
|
Particular Values
L(2) |
≈ |
1.18131+0.297209i |
L(21) |
≈ |
1.18131+0.297209i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.5−2.59i)T |
| 7 | 1+(18.4+1.73i)T |
good | 2 | 1+(0.124−0.214i)T+(−4−6.92i)T2 |
| 5 | 1+(−6.21+10.7i)T+(−62.5−108.i)T2 |
| 11 | 1+(30.1+52.2i)T+(−665.5+1.15e3i)T2 |
| 13 | 1−36.4T+2.19e3T2 |
| 17 | 1+(−24.3−42.2i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(−25.2+43.7i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(69.3−120.i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+61.1T+2.43e4T2 |
| 31 | 1+(−0.584−1.01i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(34.7−60.2i)T+(−2.53e4−4.38e4i)T2 |
| 41 | 1−308.T+6.89e4T2 |
| 43 | 1−174.T+7.95e4T2 |
| 47 | 1+(194.−337.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(157.+272.i)T+(−7.44e4+1.28e5i)T2 |
| 59 | 1+(422.+731.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(−169.+293.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(−485.−841.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1+98.4T+3.57e5T2 |
| 73 | 1+(355.+615.i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(−243.+421.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1−605.T+5.71e5T2 |
| 89 | 1+(109.−188.i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1+782.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.42840234217564586993226542844, −16.23055622637122962884479404939, −15.89661175917865023681722252124, −13.58223739559200347317134805619, −12.82073607332888322503371272846, −11.05263346182170649797912524248, −9.332721178444415412381209580040, −8.119892828999079687461125020766, −5.88817185904019278055773599757, −3.38228381260687071477557465693,
2.48372776722578918437887004989, 6.03416664316828508044427140253, 7.18989616090266510259301698319, 9.670961843150247179522507042355, 10.57294761895014104508982770498, 12.40634587593307672436147169363, 13.85550663964881382335246218730, 14.94093638176937574859696846384, 16.09129734937073203102080876666, 18.18892700008772531938131117749