L(s) = 1 | + 4·2-s − 9·3-s + 16·4-s − 25·5-s − 36·6-s + 49·7-s + 64·8-s + 81·9-s − 100·10-s − 492·11-s − 144·12-s + 938·13-s + 196·14-s + 225·15-s + 256·16-s − 1.93e3·17-s + 324·18-s + 248·19-s − 400·20-s − 441·21-s − 1.96e3·22-s + 60·23-s − 576·24-s + 625·25-s + 3.75e3·26-s − 729·27-s + 784·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 1.22·11-s − 0.288·12-s + 1.53·13-s + 0.267·14-s + 0.258·15-s + 1/4·16-s − 1.62·17-s + 0.235·18-s + 0.157·19-s − 0.223·20-s − 0.218·21-s − 0.866·22-s + 0.0236·23-s − 0.204·24-s + 1/5·25-s + 1.08·26-s − 0.192·27-s + 0.188·28-s + ⋯ |
Λ(s)=(=(210s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(210s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−p2T |
| 3 | 1+p2T |
| 5 | 1+p2T |
| 7 | 1−p2T |
good | 11 | 1+492T+p5T2 |
| 13 | 1−938T+p5T2 |
| 17 | 1+114pT+p5T2 |
| 19 | 1−248T+p5T2 |
| 23 | 1−60T+p5T2 |
| 29 | 1+6546T+p5T2 |
| 31 | 1+3484T+p5T2 |
| 37 | 1+2938T+p5T2 |
| 41 | 1+17754T+p5T2 |
| 43 | 1+9748T+p5T2 |
| 47 | 1−7656T+p5T2 |
| 53 | 1+21198T+p5T2 |
| 59 | 1+10188T+p5T2 |
| 61 | 1+1930T+p5T2 |
| 67 | 1+22348T+p5T2 |
| 71 | 1+2184T+p5T2 |
| 73 | 1+53410T+p5T2 |
| 79 | 1+44896T+p5T2 |
| 83 | 1−84324T+p5T2 |
| 89 | 1−130950T+p5T2 |
| 97 | 1−156830T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.06334050104845286509689993111, −10.58586358385969120935629006063, −8.889558343079709824040191035818, −7.81247868816288985539895225323, −6.70152200483342690857868169703, −5.61705972764294132422848289779, −4.63437734101092637367893792983, −3.47035688322890505204673619302, −1.81416228489110967430133918984, 0,
1.81416228489110967430133918984, 3.47035688322890505204673619302, 4.63437734101092637367893792983, 5.61705972764294132422848289779, 6.70152200483342690857868169703, 7.81247868816288985539895225323, 8.889558343079709824040191035818, 10.58586358385969120935629006063, 11.06334050104845286509689993111