Properties

Label 2-2100-1.1-c3-0-11
Degree $2$
Conductor $2100$
Sign $1$
Analytic cond. $123.904$
Root an. cond. $11.1312$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 7·7-s + 9·9-s − 44·11-s + 42·13-s + 94·17-s − 36·19-s − 21·21-s − 24·23-s − 27·27-s + 54·29-s − 112·31-s + 132·33-s + 322·37-s − 126·39-s − 22·41-s − 292·43-s − 272·47-s + 49·49-s − 282·51-s + 578·53-s + 108·57-s − 44·59-s − 26·61-s + 63·63-s − 12·67-s + 72·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s − 1.20·11-s + 0.896·13-s + 1.34·17-s − 0.434·19-s − 0.218·21-s − 0.217·23-s − 0.192·27-s + 0.345·29-s − 0.648·31-s + 0.696·33-s + 1.43·37-s − 0.517·39-s − 0.0838·41-s − 1.03·43-s − 0.844·47-s + 1/7·49-s − 0.774·51-s + 1.49·53-s + 0.250·57-s − 0.0970·59-s − 0.0545·61-s + 0.125·63-s − 0.0218·67-s + 0.125·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2100\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(123.904\)
Root analytic conductor: \(11.1312\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2100,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.672868323\)
\(L(\frac12)\) \(\approx\) \(1.672868323\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
5 \( 1 \)
7 \( 1 - p T \)
good11 \( 1 + 4 p T + p^{3} T^{2} \)
13 \( 1 - 42 T + p^{3} T^{2} \)
17 \( 1 - 94 T + p^{3} T^{2} \)
19 \( 1 + 36 T + p^{3} T^{2} \)
23 \( 1 + 24 T + p^{3} T^{2} \)
29 \( 1 - 54 T + p^{3} T^{2} \)
31 \( 1 + 112 T + p^{3} T^{2} \)
37 \( 1 - 322 T + p^{3} T^{2} \)
41 \( 1 + 22 T + p^{3} T^{2} \)
43 \( 1 + 292 T + p^{3} T^{2} \)
47 \( 1 + 272 T + p^{3} T^{2} \)
53 \( 1 - 578 T + p^{3} T^{2} \)
59 \( 1 + 44 T + p^{3} T^{2} \)
61 \( 1 + 26 T + p^{3} T^{2} \)
67 \( 1 + 12 T + p^{3} T^{2} \)
71 \( 1 + 280 T + p^{3} T^{2} \)
73 \( 1 + 410 T + p^{3} T^{2} \)
79 \( 1 + 320 T + p^{3} T^{2} \)
83 \( 1 - 1252 T + p^{3} T^{2} \)
89 \( 1 + 38 T + p^{3} T^{2} \)
97 \( 1 + 1250 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.570183794080440146370735293837, −7.978886477052569302036617645104, −7.27109840802113815825751475124, −6.22314462128016838053782585671, −5.58419718994798565951720625741, −4.88125351205549809206160451763, −3.88629182451005082115763452093, −2.88220030380574954091197146972, −1.68355179838325731185657775244, −0.62177367992935995013956624917, 0.62177367992935995013956624917, 1.68355179838325731185657775244, 2.88220030380574954091197146972, 3.88629182451005082115763452093, 4.88125351205549809206160451763, 5.58419718994798565951720625741, 6.22314462128016838053782585671, 7.27109840802113815825751475124, 7.978886477052569302036617645104, 8.570183794080440146370735293837

Graph of the $Z$-function along the critical line