Properties

Label 2-2100-1.1-c3-0-36
Degree $2$
Conductor $2100$
Sign $-1$
Analytic cond. $123.904$
Root an. cond. $11.1312$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 7·7-s + 9·9-s − 50.8·11-s − 16.4·13-s + 25.9·17-s + 106.·19-s − 21·21-s − 42.5·23-s − 27·27-s + 64.5·29-s − 40.4·31-s + 152.·33-s + 82.7·37-s + 49.4·39-s + 80.2·41-s + 184.·43-s − 115.·47-s + 49·49-s − 77.7·51-s − 643.·53-s − 318.·57-s + 526.·59-s − 702.·61-s + 63·63-s + 832.·67-s + 127.·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 0.333·9-s − 1.39·11-s − 0.351·13-s + 0.369·17-s + 1.28·19-s − 0.218·21-s − 0.385·23-s − 0.192·27-s + 0.413·29-s − 0.234·31-s + 0.804·33-s + 0.367·37-s + 0.203·39-s + 0.305·41-s + 0.655·43-s − 0.357·47-s + 0.142·49-s − 0.213·51-s − 1.66·53-s − 0.739·57-s + 1.16·59-s − 1.47·61-s + 0.125·63-s + 1.51·67-s + 0.222·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2100\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(123.904\)
Root analytic conductor: \(11.1312\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2100,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
5 \( 1 \)
7 \( 1 - 7T \)
good11 \( 1 + 50.8T + 1.33e3T^{2} \)
13 \( 1 + 16.4T + 2.19e3T^{2} \)
17 \( 1 - 25.9T + 4.91e3T^{2} \)
19 \( 1 - 106.T + 6.85e3T^{2} \)
23 \( 1 + 42.5T + 1.21e4T^{2} \)
29 \( 1 - 64.5T + 2.43e4T^{2} \)
31 \( 1 + 40.4T + 2.97e4T^{2} \)
37 \( 1 - 82.7T + 5.06e4T^{2} \)
41 \( 1 - 80.2T + 6.89e4T^{2} \)
43 \( 1 - 184.T + 7.95e4T^{2} \)
47 \( 1 + 115.T + 1.03e5T^{2} \)
53 \( 1 + 643.T + 1.48e5T^{2} \)
59 \( 1 - 526.T + 2.05e5T^{2} \)
61 \( 1 + 702.T + 2.26e5T^{2} \)
67 \( 1 - 832.T + 3.00e5T^{2} \)
71 \( 1 + 716.T + 3.57e5T^{2} \)
73 \( 1 - 487.T + 3.89e5T^{2} \)
79 \( 1 + 143.T + 4.93e5T^{2} \)
83 \( 1 - 1.26e3T + 5.71e5T^{2} \)
89 \( 1 + 860.T + 7.04e5T^{2} \)
97 \( 1 - 1.69e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.045054680979144882343468328625, −7.73728547558054443798302536438, −6.83452819827806847635656694746, −5.78592574452618892769293564433, −5.22769962613234369295375236007, −4.51501322180475690878346137073, −3.30027839810003056071937738987, −2.35175019827560525961377158775, −1.12574185109972005041975757413, 0, 1.12574185109972005041975757413, 2.35175019827560525961377158775, 3.30027839810003056071937738987, 4.51501322180475690878346137073, 5.22769962613234369295375236007, 5.78592574452618892769293564433, 6.83452819827806847635656694746, 7.73728547558054443798302536438, 8.045054680979144882343468328625

Graph of the $Z$-function along the critical line