L(s) = 1 | + (−0.965 + 0.258i)3-s + (0.707 − 0.707i)7-s + (0.866 − 0.499i)9-s + (−1.41 − 1.41i)13-s + (−0.500 + 0.866i)21-s + (−0.707 + 0.707i)27-s + (−1.5 − 0.866i)31-s + (0.448 − 1.67i)37-s + (1.73 + 1.00i)39-s + (−1.22 + 1.22i)43-s − 1.00i·49-s + (1.5 − 0.866i)61-s + (0.258 − 0.965i)63-s + (0.965 − 0.258i)73-s + (0.866 − 0.5i)79-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.258i)3-s + (0.707 − 0.707i)7-s + (0.866 − 0.499i)9-s + (−1.41 − 1.41i)13-s + (−0.500 + 0.866i)21-s + (−0.707 + 0.707i)27-s + (−1.5 − 0.866i)31-s + (0.448 − 1.67i)37-s + (1.73 + 1.00i)39-s + (−1.22 + 1.22i)43-s − 1.00i·49-s + (1.5 − 0.866i)61-s + (0.258 − 0.965i)63-s + (0.965 − 0.258i)73-s + (0.866 − 0.5i)79-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0560 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0560 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6921073332\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6921073332\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.965 - 0.258i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-0.707 + 0.707i)T \) |
good | 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (1.41 + 1.41i)T + iT^{2} \) |
| 17 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.448 + 1.67i)T + (-0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (1.22 - 1.22i)T - iT^{2} \) |
| 47 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-0.965 + 0.258i)T + (0.866 - 0.5i)T^{2} \) |
| 79 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.397369009358246004137965924135, −8.071103083110663958378292077307, −7.52900494861069143278501816541, −6.84216261333754719761662618008, −5.70100850848843929816607374033, −5.17238138674655012458035596247, −4.40422622272978833381476674233, −3.45327380785973644971106557594, −2.03757011849520878481465676673, −0.55337398647452010738487467046,
1.59210099542109706442567642959, 2.39614075720857589713401689299, 3.97480310746387872597649415265, 5.02162789247560460614162068322, 5.22989982985694699514846896103, 6.45910989544835669009763139893, 7.00184892370815675734078463505, 7.79818427497818660301527016478, 8.740157875364433313411169630441, 9.519001126053961240296717318351