L(s) = 1 | + (0.965 + 0.258i)3-s + (0.965 − 0.258i)7-s + (0.866 + 0.499i)9-s + (−0.707 + 0.707i)13-s + (−0.866 + 1.5i)19-s + 21-s + (0.707 + 0.707i)27-s + (1.5 − 0.866i)31-s + (−0.448 − 1.67i)37-s + (−0.866 + 0.500i)39-s + (−1.22 − 1.22i)43-s + (0.866 − 0.499i)49-s + (−1.22 + 1.22i)57-s + (0.965 + 0.258i)63-s + (−1.67 − 0.448i)67-s + ⋯ |
L(s) = 1 | + (0.965 + 0.258i)3-s + (0.965 − 0.258i)7-s + (0.866 + 0.499i)9-s + (−0.707 + 0.707i)13-s + (−0.866 + 1.5i)19-s + 21-s + (0.707 + 0.707i)27-s + (1.5 − 0.866i)31-s + (−0.448 − 1.67i)37-s + (−0.866 + 0.500i)39-s + (−1.22 − 1.22i)43-s + (0.866 − 0.499i)49-s + (−1.22 + 1.22i)57-s + (0.965 + 0.258i)63-s + (−1.67 − 0.448i)67-s + ⋯ |
Λ(s)=(=(2100s/2ΓC(s)L(s)(0.910−0.413i)Λ(1−s)
Λ(s)=(=(2100s/2ΓC(s)L(s)(0.910−0.413i)Λ(1−s)
Degree: |
2 |
Conductor: |
2100
= 22⋅3⋅52⋅7
|
Sign: |
0.910−0.413i
|
Analytic conductor: |
1.04803 |
Root analytic conductor: |
1.02373 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2100(593,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2100, ( :0), 0.910−0.413i)
|
Particular Values
L(21) |
≈ |
1.766055340 |
L(21) |
≈ |
1.766055340 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.965−0.258i)T |
| 5 | 1 |
| 7 | 1+(−0.965+0.258i)T |
good | 11 | 1+(0.5−0.866i)T2 |
| 13 | 1+(0.707−0.707i)T−iT2 |
| 17 | 1+(0.866+0.5i)T2 |
| 19 | 1+(0.866−1.5i)T+(−0.5−0.866i)T2 |
| 23 | 1+(−0.866+0.5i)T2 |
| 29 | 1+T2 |
| 31 | 1+(−1.5+0.866i)T+(0.5−0.866i)T2 |
| 37 | 1+(0.448+1.67i)T+(−0.866+0.5i)T2 |
| 41 | 1+T2 |
| 43 | 1+(1.22+1.22i)T+iT2 |
| 47 | 1+(−0.866+0.5i)T2 |
| 53 | 1+(0.866+0.5i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(1.67+0.448i)T+(0.866+0.5i)T2 |
| 71 | 1−T2 |
| 73 | 1+(0.965+0.258i)T+(0.866+0.5i)T2 |
| 79 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 83 | 1+iT2 |
| 89 | 1+(0.5+0.866i)T2 |
| 97 | 1+(−1.41−1.41i)T+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.206487736433943890359698183453, −8.555186686020699933265615916639, −7.85899440264884426271411918653, −7.30521776544419520617471562294, −6.27753049747185965532118923706, −5.13363840062381935359766167564, −4.32969160129989271305096442946, −3.72219632302965796290347689337, −2.38037071433561241916760339144, −1.68580323058487898409502559381,
1.35093327462798419083978319162, 2.50174319384013010363207105439, 3.13449517558234501863118962822, 4.58437513763845363900613186168, 4.88615937348950763466938400600, 6.28630303228383993132731072213, 7.03798931413965310003979527287, 7.86536072808857315033621750856, 8.448415657712571029589290197730, 8.988636256567794050799568312868