L(s) = 1 | + (0.965 + 0.258i)3-s + (0.965 − 0.258i)7-s + (0.866 + 0.499i)9-s + (−0.707 + 0.707i)13-s + (−0.866 + 1.5i)19-s + 21-s + (0.707 + 0.707i)27-s + (1.5 − 0.866i)31-s + (−0.448 − 1.67i)37-s + (−0.866 + 0.500i)39-s + (−1.22 − 1.22i)43-s + (0.866 − 0.499i)49-s + (−1.22 + 1.22i)57-s + (0.965 + 0.258i)63-s + (−1.67 − 0.448i)67-s + ⋯ |
L(s) = 1 | + (0.965 + 0.258i)3-s + (0.965 − 0.258i)7-s + (0.866 + 0.499i)9-s + (−0.707 + 0.707i)13-s + (−0.866 + 1.5i)19-s + 21-s + (0.707 + 0.707i)27-s + (1.5 − 0.866i)31-s + (−0.448 − 1.67i)37-s + (−0.866 + 0.500i)39-s + (−1.22 − 1.22i)43-s + (0.866 − 0.499i)49-s + (−1.22 + 1.22i)57-s + (0.965 + 0.258i)63-s + (−1.67 − 0.448i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.910 - 0.413i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.910 - 0.413i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.766055340\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.766055340\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.965 - 0.258i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-0.965 + 0.258i)T \) |
good | 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 17 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 19 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.448 + 1.67i)T + (-0.866 + 0.5i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (1.22 + 1.22i)T + iT^{2} \) |
| 47 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (1.67 + 0.448i)T + (0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.965 + 0.258i)T + (0.866 + 0.5i)T^{2} \) |
| 79 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-1.41 - 1.41i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.206487736433943890359698183453, −8.555186686020699933265615916639, −7.85899440264884426271411918653, −7.30521776544419520617471562294, −6.27753049747185965532118923706, −5.13363840062381935359766167564, −4.32969160129989271305096442946, −3.72219632302965796290347689337, −2.38037071433561241916760339144, −1.68580323058487898409502559381,
1.35093327462798419083978319162, 2.50174319384013010363207105439, 3.13449517558234501863118962822, 4.58437513763845363900613186168, 4.88615937348950763466938400600, 6.28630303228383993132731072213, 7.03798931413965310003979527287, 7.86536072808857315033621750856, 8.448415657712571029589290197730, 8.988636256567794050799568312868