L(s) = 1 | + (0.5 − 0.866i)3-s − 7-s + (−0.499 − 0.866i)9-s − 2·13-s + (−1 − 1.73i)19-s + (−0.5 + 0.866i)21-s − 0.999·27-s + (0.5 − 0.866i)31-s + (−0.5 − 0.866i)37-s + (−1 + 1.73i)39-s + 43-s + 49-s − 1.99·57-s + (0.5 + 0.866i)61-s + (0.499 + 0.866i)63-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)3-s − 7-s + (−0.499 − 0.866i)9-s − 2·13-s + (−1 − 1.73i)19-s + (−0.5 + 0.866i)21-s − 0.999·27-s + (0.5 − 0.866i)31-s + (−0.5 − 0.866i)37-s + (−1 + 1.73i)39-s + 43-s + 49-s − 1.99·57-s + (0.5 + 0.866i)61-s + (0.499 + 0.866i)63-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.895 + 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.895 + 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6982105771\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6982105771\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + T \) |
good | 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + 2T + T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.119067987565517800567991667680, −8.104620255449959002183226012153, −7.21903574354301994920824613477, −6.87661785654432071081895943124, −6.01035895553357670349764099437, −4.95326137885336850924624301160, −3.92450277127397681537746845221, −2.66605004214087088489473630842, −2.35118307705823380121013576884, −0.41741284568410749007367516442,
2.13866151895462344306578545279, 2.98978676491834756275044514366, 3.86823952812899062202965003619, 4.70786124998326249892450902016, 5.54607648150455333156157480689, 6.48948922826676185148570891508, 7.39306049119319320721627673730, 8.176069391337383464268993776714, 8.957068056411632745930208733391, 9.827936326910205045853000461930