L(s) = 1 | + (0.5 − 0.866i)3-s − 7-s + (−0.499 − 0.866i)9-s − 2·13-s + (−1 − 1.73i)19-s + (−0.5 + 0.866i)21-s − 0.999·27-s + (0.5 − 0.866i)31-s + (−0.5 − 0.866i)37-s + (−1 + 1.73i)39-s + 43-s + 49-s − 1.99·57-s + (0.5 + 0.866i)61-s + (0.499 + 0.866i)63-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)3-s − 7-s + (−0.499 − 0.866i)9-s − 2·13-s + (−1 − 1.73i)19-s + (−0.5 + 0.866i)21-s − 0.999·27-s + (0.5 − 0.866i)31-s + (−0.5 − 0.866i)37-s + (−1 + 1.73i)39-s + 43-s + 49-s − 1.99·57-s + (0.5 + 0.866i)61-s + (0.499 + 0.866i)63-s + ⋯ |
Λ(s)=(=(2100s/2ΓC(s)L(s)(−0.895+0.444i)Λ(1−s)
Λ(s)=(=(2100s/2ΓC(s)L(s)(−0.895+0.444i)Λ(1−s)
Degree: |
2 |
Conductor: |
2100
= 22⋅3⋅52⋅7
|
Sign: |
−0.895+0.444i
|
Analytic conductor: |
1.04803 |
Root analytic conductor: |
1.02373 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2100(1901,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2100, ( :0), −0.895+0.444i)
|
Particular Values
L(21) |
≈ |
0.6982105771 |
L(21) |
≈ |
0.6982105771 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.5+0.866i)T |
| 5 | 1 |
| 7 | 1+T |
good | 11 | 1+(0.5+0.866i)T2 |
| 13 | 1+2T+T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 19 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 37 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1−T+T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1+(0.5+0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 67 | 1+(−1+1.73i)T+(−0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 79 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1−T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.119067987565517800567991667680, −8.104620255449959002183226012153, −7.21903574354301994920824613477, −6.87661785654432071081895943124, −6.01035895553357670349764099437, −4.95326137885336850924624301160, −3.92450277127397681537746845221, −2.66605004214087088489473630842, −2.35118307705823380121013576884, −0.41741284568410749007367516442,
2.13866151895462344306578545279, 2.98978676491834756275044514366, 3.86823952812899062202965003619, 4.70786124998326249892450902016, 5.54607648150455333156157480689, 6.48948922826676185148570891508, 7.39306049119319320721627673730, 8.176069391337383464268993776714, 8.957068056411632745930208733391, 9.827936326910205045853000461930