L(s) = 1 | + (−0.393 + 1.68i)3-s + 2.18i·5-s + 1.18i·7-s + (−2.69 − 1.32i)9-s + (−3.29 + 0.359i)11-s + 4.84i·13-s + (−3.69 − 0.860i)15-s − 6.16·17-s − 5.09i·19-s + (−1.99 − 0.466i)21-s − 3.84i·23-s + 0.213·25-s + (3.29 − 4.01i)27-s − 3.57·29-s + 7.38·31-s + ⋯ |
L(s) = 1 | + (−0.227 + 0.973i)3-s + 0.978i·5-s + 0.448i·7-s + (−0.896 − 0.442i)9-s + (−0.994 + 0.108i)11-s + 1.34i·13-s + (−0.952 − 0.222i)15-s − 1.49·17-s − 1.16i·19-s + (−0.436 − 0.101i)21-s − 0.800i·23-s + 0.0426·25-s + (0.634 − 0.772i)27-s − 0.663·29-s + 1.32·31-s + ⋯ |
Λ(s)=(=(2112s/2ΓC(s)L(s)(−0.120+0.992i)Λ(2−s)
Λ(s)=(=(2112s/2ΓC(s+1/2)L(s)(−0.120+0.992i)Λ(1−s)
Degree: |
2 |
Conductor: |
2112
= 26⋅3⋅11
|
Sign: |
−0.120+0.992i
|
Analytic conductor: |
16.8644 |
Root analytic conductor: |
4.10662 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2112(65,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2112, ( :1/2), −0.120+0.992i)
|
Particular Values
L(1) |
≈ |
0.2193980735 |
L(21) |
≈ |
0.2193980735 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.393−1.68i)T |
| 11 | 1+(3.29−0.359i)T |
good | 5 | 1−2.18iT−5T2 |
| 7 | 1−1.18iT−7T2 |
| 13 | 1−4.84iT−13T2 |
| 17 | 1+6.16T+17T2 |
| 19 | 1+5.09iT−19T2 |
| 23 | 1+3.84iT−23T2 |
| 29 | 1+3.57T+29T2 |
| 31 | 1−7.38T+31T2 |
| 37 | 1+5.38T+37T2 |
| 41 | 1+0.426T+41T2 |
| 43 | 1+6.02iT−43T2 |
| 47 | 1−7.93iT−47T2 |
| 53 | 1+4.84iT−53T2 |
| 59 | 1+1.00iT−59T2 |
| 61 | 1−8.65iT−61T2 |
| 67 | 1+1.80T+67T2 |
| 71 | 1−5.27iT−71T2 |
| 73 | 1−13.4iT−73T2 |
| 79 | 1+12.3iT−79T2 |
| 83 | 1+0.852T+83T2 |
| 89 | 1−7.96iT−89T2 |
| 97 | 1+17.5T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.671507956700806263686842050548, −8.937684898960180994249193656797, −8.408220742906205223238037410235, −6.99411761058759900858227996404, −6.67694200431570123159224347769, −5.65664257297466190932762398610, −4.71852818973692271185657173326, −4.14436184515980069001177066909, −2.83311308090044823630461370161, −2.35563902260707713452805335139,
0.082188752155315212592204741764, 1.18030014548915274443944834480, 2.31097336510494083599501361944, 3.41948948968686708448047667192, 4.70464669097435032830620965804, 5.39033730936162944865115917321, 6.08509708949126289565284729636, 7.07761447388565163569102998129, 7.914000920364921147999295637852, 8.261637617923293288910138990740