L(s) = 1 | + (1.5 + 0.866i)5-s + (−0.5 + 0.866i)7-s + (−0.5 + 0.866i)9-s + (1.5 − 0.866i)11-s + (0.5 − 0.866i)19-s + (−1.5 − 0.866i)23-s + (1 + 1.73i)25-s + (−1.5 + 0.866i)35-s + 1.73i·43-s + (−1.5 + 0.866i)45-s + (−0.5 + 0.866i)47-s + (−0.499 − 0.866i)49-s + 3·55-s + (−1.5 − 0.866i)61-s + (−0.499 − 0.866i)63-s + ⋯ |
L(s) = 1 | + (1.5 + 0.866i)5-s + (−0.5 + 0.866i)7-s + (−0.5 + 0.866i)9-s + (1.5 − 0.866i)11-s + (0.5 − 0.866i)19-s + (−1.5 − 0.866i)23-s + (1 + 1.73i)25-s + (−1.5 + 0.866i)35-s + 1.73i·43-s + (−1.5 + 0.866i)45-s + (−0.5 + 0.866i)47-s + (−0.499 − 0.866i)49-s + 3·55-s + (−1.5 − 0.866i)61-s + (−0.499 − 0.866i)63-s + ⋯ |
Λ(s)=(=(2128s/2ΓC(s)L(s)(0.605−0.795i)Λ(1−s)
Λ(s)=(=(2128s/2ΓC(s)L(s)(0.605−0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
2128
= 24⋅7⋅19
|
Sign: |
0.605−0.795i
|
Analytic conductor: |
1.06201 |
Root analytic conductor: |
1.03053 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2128(607,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2128, ( :0), 0.605−0.795i)
|
Particular Values
L(21) |
≈ |
1.486679321 |
L(21) |
≈ |
1.486679321 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(0.5−0.866i)T |
| 19 | 1+(−0.5+0.866i)T |
good | 3 | 1+(0.5−0.866i)T2 |
| 5 | 1+(−1.5−0.866i)T+(0.5+0.866i)T2 |
| 11 | 1+(−1.5+0.866i)T+(0.5−0.866i)T2 |
| 13 | 1+T2 |
| 17 | 1+(0.5−0.866i)T2 |
| 23 | 1+(1.5+0.866i)T+(0.5+0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+(0.5+0.866i)T2 |
| 41 | 1+T2 |
| 43 | 1−1.73iT−T2 |
| 47 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 53 | 1+(0.5−0.866i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(1.5+0.866i)T+(0.5+0.866i)T2 |
| 67 | 1+(−0.5+0.866i)T2 |
| 71 | 1+T2 |
| 73 | 1+(−1.5+0.866i)T+(0.5−0.866i)T2 |
| 79 | 1+(−0.5−0.866i)T2 |
| 83 | 1+T+T2 |
| 89 | 1+(−0.5−0.866i)T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.421584615111340830512321215627, −8.830654638006002333635792837989, −7.932388157250182007583918749478, −6.68239033022775538223791710951, −6.19356564175547818110603539975, −5.77093257515846501185404354096, −4.71215673595669593516441236667, −3.27891043958527578360939212951, −2.61463658342847155891111444516, −1.72080273339896398541295768904,
1.18230460808785983394956349765, 1.98778001504534548398865043734, 3.55317679433870760296363359254, 4.16926382172128054001661105122, 5.33911680886528468558921014472, 6.08451828908086746233396723287, 6.60070047556043472933429782229, 7.52554980726921347994747031501, 8.708506787600451563904095291912, 9.262675324269625945857583643064