Properties

Label 2-2156-1.1-c1-0-12
Degree $2$
Conductor $2156$
Sign $1$
Analytic cond. $17.2157$
Root an. cond. $4.14918$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 2·9-s + 11-s + 4·13-s + 15-s + 6·17-s + 2·19-s + 23-s − 4·25-s − 5·27-s + 2·29-s + 31-s + 33-s − 9·37-s + 4·39-s − 6·41-s + 8·43-s − 2·45-s + 8·47-s + 6·51-s + 10·53-s + 55-s + 2·57-s − 59-s + 2·61-s + 4·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 2/3·9-s + 0.301·11-s + 1.10·13-s + 0.258·15-s + 1.45·17-s + 0.458·19-s + 0.208·23-s − 4/5·25-s − 0.962·27-s + 0.371·29-s + 0.179·31-s + 0.174·33-s − 1.47·37-s + 0.640·39-s − 0.937·41-s + 1.21·43-s − 0.298·45-s + 1.16·47-s + 0.840·51-s + 1.37·53-s + 0.134·55-s + 0.264·57-s − 0.130·59-s + 0.256·61-s + 0.496·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2156\)    =    \(2^{2} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(17.2157\)
Root analytic conductor: \(4.14918\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2156,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.500931279\)
\(L(\frac12)\) \(\approx\) \(2.500931279\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good3 \( 1 - T + p T^{2} \)
5 \( 1 - T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - T + p T^{2} \)
37 \( 1 + 9 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 11 T + p T^{2} \)
71 \( 1 - 11 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 + 14 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 13 T + p T^{2} \)
97 \( 1 - 9 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.974185337329099643799769666493, −8.407740849273713562840840409918, −7.67917403613721495870291611195, −6.74045693398578522613438993468, −5.76739181125818504000599093049, −5.36066330999113972421117879141, −3.88639452690941288549937743531, −3.31570971349033004173618391007, −2.25052098719008434454447482785, −1.07580389213150519212384849326, 1.07580389213150519212384849326, 2.25052098719008434454447482785, 3.31570971349033004173618391007, 3.88639452690941288549937743531, 5.36066330999113972421117879141, 5.76739181125818504000599093049, 6.74045693398578522613438993468, 7.67917403613721495870291611195, 8.407740849273713562840840409918, 8.974185337329099643799769666493

Graph of the $Z$-function along the critical line