L(s) = 1 | − 1.65·3-s − 2.91·5-s − 0.255·9-s + 11-s − 0.343·13-s + 4.82·15-s + 1.25·17-s + 4.39·19-s + 8.70·23-s + 3.48·25-s + 5.39·27-s + 5.22·29-s − 9.73·31-s − 1.65·33-s + 2.17·37-s + 0.568·39-s − 9.99·41-s − 3.79·43-s + 0.744·45-s − 9.70·47-s − 2.08·51-s − 4.34·53-s − 2.91·55-s − 7.27·57-s + 4.99·59-s + 0.511·61-s + 65-s + ⋯ |
L(s) = 1 | − 0.956·3-s − 1.30·5-s − 0.0852·9-s + 0.301·11-s − 0.0952·13-s + 1.24·15-s + 0.304·17-s + 1.00·19-s + 1.81·23-s + 0.696·25-s + 1.03·27-s + 0.970·29-s − 1.74·31-s − 0.288·33-s + 0.357·37-s + 0.0910·39-s − 1.56·41-s − 0.578·43-s + 0.110·45-s − 1.41·47-s − 0.291·51-s − 0.596·53-s − 0.392·55-s − 0.964·57-s + 0.649·59-s + 0.0654·61-s + 0.124·65-s + ⋯ |
Λ(s)=(=(2156s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(2156s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 11 | 1−T |
good | 3 | 1+1.65T+3T2 |
| 5 | 1+2.91T+5T2 |
| 13 | 1+0.343T+13T2 |
| 17 | 1−1.25T+17T2 |
| 19 | 1−4.39T+19T2 |
| 23 | 1−8.70T+23T2 |
| 29 | 1−5.22T+29T2 |
| 31 | 1+9.73T+31T2 |
| 37 | 1−2.17T+37T2 |
| 41 | 1+9.99T+41T2 |
| 43 | 1+3.79T+43T2 |
| 47 | 1+9.70T+47T2 |
| 53 | 1+4.34T+53T2 |
| 59 | 1−4.99T+59T2 |
| 61 | 1−0.511T+61T2 |
| 67 | 1+10.3T+67T2 |
| 71 | 1−4.45T+71T2 |
| 73 | 1−7.28T+73T2 |
| 79 | 1−10.9T+79T2 |
| 83 | 1+4.11T+83T2 |
| 89 | 1+2.26T+89T2 |
| 97 | 1+1.14T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.614711496269650076393770884659, −7.84571927772915964006822975864, −7.06156892111758091911946536898, −6.46144291448875524985003605157, −5.25285577588910344806110232343, −4.91676274859652781926695113938, −3.69916054482749458103697846082, −3.02668771153405704820279894340, −1.19802951458921137436160928554, 0,
1.19802951458921137436160928554, 3.02668771153405704820279894340, 3.69916054482749458103697846082, 4.91676274859652781926695113938, 5.25285577588910344806110232343, 6.46144291448875524985003605157, 7.06156892111758091911946536898, 7.84571927772915964006822975864, 8.614711496269650076393770884659