Properties

Label 2-2156-1.1-c1-0-7
Degree $2$
Conductor $2156$
Sign $1$
Analytic cond. $17.2157$
Root an. cond. $4.14918$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.25·3-s − 3.52·5-s − 1.42·9-s + 11-s − 2.26·13-s − 4.42·15-s + 4.78·17-s − 2.51·19-s + 8.42·23-s + 7.42·25-s − 5.55·27-s − 6·29-s + 1.25·31-s + 1.25·33-s + 4.42·37-s − 2.84·39-s + 9.31·41-s + 10.8·43-s + 5.02·45-s − 4.78·47-s + 5.99·51-s + 8.84·53-s − 3.52·55-s − 3.15·57-s − 8.30·59-s − 0.240·61-s + 8·65-s + ⋯
L(s)  = 1  + 0.724·3-s − 1.57·5-s − 0.474·9-s + 0.301·11-s − 0.629·13-s − 1.14·15-s + 1.15·17-s − 0.575·19-s + 1.75·23-s + 1.48·25-s − 1.06·27-s − 1.11·29-s + 0.225·31-s + 0.218·33-s + 0.727·37-s − 0.456·39-s + 1.45·41-s + 1.65·43-s + 0.748·45-s − 0.697·47-s + 0.840·51-s + 1.21·53-s − 0.475·55-s − 0.417·57-s − 1.08·59-s − 0.0308·61-s + 0.992·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2156\)    =    \(2^{2} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(17.2157\)
Root analytic conductor: \(4.14918\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2156,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.474337976\)
\(L(\frac12)\) \(\approx\) \(1.474337976\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good3 \( 1 - 1.25T + 3T^{2} \)
5 \( 1 + 3.52T + 5T^{2} \)
13 \( 1 + 2.26T + 13T^{2} \)
17 \( 1 - 4.78T + 17T^{2} \)
19 \( 1 + 2.51T + 19T^{2} \)
23 \( 1 - 8.42T + 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 - 1.25T + 31T^{2} \)
37 \( 1 - 4.42T + 37T^{2} \)
41 \( 1 - 9.31T + 41T^{2} \)
43 \( 1 - 10.8T + 43T^{2} \)
47 \( 1 + 4.78T + 47T^{2} \)
53 \( 1 - 8.84T + 53T^{2} \)
59 \( 1 + 8.30T + 59T^{2} \)
61 \( 1 + 0.240T + 61T^{2} \)
67 \( 1 - 3.57T + 67T^{2} \)
71 \( 1 + 4.42T + 71T^{2} \)
73 \( 1 - 14.3T + 73T^{2} \)
79 \( 1 - 6T + 79T^{2} \)
83 \( 1 - 9.56T + 83T^{2} \)
89 \( 1 - 8.54T + 89T^{2} \)
97 \( 1 - 1.01T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.058242811752511796180438861131, −8.150593094917937008034781320610, −7.66998204858068169415901088039, −7.10528542978807920699284199772, −5.91151454529409096277560990414, −4.90005703289788419224181554012, −3.98675530429694916983217319469, −3.31874128829075414022403893943, −2.48304971080124585014227791748, −0.75874624783166166652060892908, 0.75874624783166166652060892908, 2.48304971080124585014227791748, 3.31874128829075414022403893943, 3.98675530429694916983217319469, 4.90005703289788419224181554012, 5.91151454529409096277560990414, 7.10528542978807920699284199772, 7.66998204858068169415901088039, 8.150593094917937008034781320610, 9.058242811752511796180438861131

Graph of the $Z$-function along the critical line