L(s) = 1 | + (0.104 + 0.994i)2-s + (−0.978 + 0.207i)4-s + (−0.309 − 0.951i)8-s + (0.669 + 0.743i)9-s + (0.669 − 0.743i)11-s + (0.913 − 0.406i)16-s + (−0.669 + 0.743i)18-s + (0.809 + 0.587i)22-s + (1.01 + 0.587i)23-s + (−0.913 − 0.406i)25-s + (0.5 + 0.363i)29-s + (0.499 + 0.866i)32-s + (−0.809 − 0.587i)36-s + (1.47 − 0.658i)37-s + 1.90i·43-s + (−0.5 + 0.866i)44-s + ⋯ |
L(s) = 1 | + (0.104 + 0.994i)2-s + (−0.978 + 0.207i)4-s + (−0.309 − 0.951i)8-s + (0.669 + 0.743i)9-s + (0.669 − 0.743i)11-s + (0.913 − 0.406i)16-s + (−0.669 + 0.743i)18-s + (0.809 + 0.587i)22-s + (1.01 + 0.587i)23-s + (−0.913 − 0.406i)25-s + (0.5 + 0.363i)29-s + (0.499 + 0.866i)32-s + (−0.809 − 0.587i)36-s + (1.47 − 0.658i)37-s + 1.90i·43-s + (−0.5 + 0.866i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0809 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0809 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.214350200\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.214350200\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.104 - 0.994i)T \) |
| 7 | \( 1 \) |
| 11 | \( 1 + (-0.669 + 0.743i)T \) |
good | 3 | \( 1 + (-0.669 - 0.743i)T^{2} \) |
| 5 | \( 1 + (0.913 + 0.406i)T^{2} \) |
| 13 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.104 - 0.994i)T^{2} \) |
| 19 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 23 | \( 1 + (-1.01 - 0.587i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.913 + 0.406i)T^{2} \) |
| 37 | \( 1 + (-1.47 + 0.658i)T + (0.669 - 0.743i)T^{2} \) |
| 41 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 - 1.90iT - T^{2} \) |
| 47 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 53 | \( 1 + (0.604 - 0.128i)T + (0.913 - 0.406i)T^{2} \) |
| 59 | \( 1 + (0.978 + 0.207i)T^{2} \) |
| 61 | \( 1 + (0.913 + 0.406i)T^{2} \) |
| 67 | \( 1 + (-1.64 + 0.951i)T + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (1.80 - 0.587i)T + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.978 - 0.207i)T^{2} \) |
| 79 | \( 1 + (1.41 - 1.27i)T + (0.104 - 0.994i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.390653055162438620885447152231, −8.468255155911914041637762691564, −7.85032774459905379509427940607, −7.13234202738077366663076337299, −6.33076629989246699792657203148, −5.61966512870565069430697288674, −4.68861280145512400422675370761, −4.01531205183555088573929775424, −2.92486189706581656547484522016, −1.26683188501870678667768599857,
1.06641710939528831820378112154, 2.13443325513619328430441501857, 3.26943665264599669528267914914, 4.14003316636666484513030518336, 4.71928452536519784101442510073, 5.84010297581943704800357386795, 6.72695083850832415561837108611, 7.56290744372002735875204274828, 8.627010823943086648310666178849, 9.270622441915439542975924100235