L(s) = 1 | + (0.104 + 0.994i)2-s + (−0.978 + 0.207i)4-s + (−0.309 − 0.951i)8-s + (0.669 + 0.743i)9-s + (0.669 − 0.743i)11-s + (0.913 − 0.406i)16-s + (−0.669 + 0.743i)18-s + (0.809 + 0.587i)22-s + (1.01 + 0.587i)23-s + (−0.913 − 0.406i)25-s + (0.5 + 0.363i)29-s + (0.499 + 0.866i)32-s + (−0.809 − 0.587i)36-s + (1.47 − 0.658i)37-s + 1.90i·43-s + (−0.5 + 0.866i)44-s + ⋯ |
L(s) = 1 | + (0.104 + 0.994i)2-s + (−0.978 + 0.207i)4-s + (−0.309 − 0.951i)8-s + (0.669 + 0.743i)9-s + (0.669 − 0.743i)11-s + (0.913 − 0.406i)16-s + (−0.669 + 0.743i)18-s + (0.809 + 0.587i)22-s + (1.01 + 0.587i)23-s + (−0.913 − 0.406i)25-s + (0.5 + 0.363i)29-s + (0.499 + 0.866i)32-s + (−0.809 − 0.587i)36-s + (1.47 − 0.658i)37-s + 1.90i·43-s + (−0.5 + 0.866i)44-s + ⋯ |
Λ(s)=(=(2156s/2ΓC(s)L(s)(0.0809−0.996i)Λ(1−s)
Λ(s)=(=(2156s/2ΓC(s)L(s)(0.0809−0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
2156
= 22⋅72⋅11
|
Sign: |
0.0809−0.996i
|
Analytic conductor: |
1.07598 |
Root analytic conductor: |
1.03729 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2156(471,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2156, ( :0), 0.0809−0.996i)
|
Particular Values
L(21) |
≈ |
1.214350200 |
L(21) |
≈ |
1.214350200 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.104−0.994i)T |
| 7 | 1 |
| 11 | 1+(−0.669+0.743i)T |
good | 3 | 1+(−0.669−0.743i)T2 |
| 5 | 1+(0.913+0.406i)T2 |
| 13 | 1+(−0.809−0.587i)T2 |
| 17 | 1+(−0.104−0.994i)T2 |
| 19 | 1+(0.978−0.207i)T2 |
| 23 | 1+(−1.01−0.587i)T+(0.5+0.866i)T2 |
| 29 | 1+(−0.5−0.363i)T+(0.309+0.951i)T2 |
| 31 | 1+(−0.913+0.406i)T2 |
| 37 | 1+(−1.47+0.658i)T+(0.669−0.743i)T2 |
| 41 | 1+(0.309−0.951i)T2 |
| 43 | 1−1.90iT−T2 |
| 47 | 1+(0.978−0.207i)T2 |
| 53 | 1+(0.604−0.128i)T+(0.913−0.406i)T2 |
| 59 | 1+(0.978+0.207i)T2 |
| 61 | 1+(0.913+0.406i)T2 |
| 67 | 1+(−1.64+0.951i)T+(0.5−0.866i)T2 |
| 71 | 1+(1.80−0.587i)T+(0.809−0.587i)T2 |
| 73 | 1+(−0.978−0.207i)T2 |
| 79 | 1+(1.41−1.27i)T+(0.104−0.994i)T2 |
| 83 | 1+(0.809−0.587i)T2 |
| 89 | 1+(−0.5−0.866i)T2 |
| 97 | 1+(−0.809−0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.390653055162438620885447152231, −8.468255155911914041637762691564, −7.85032774459905379509427940607, −7.13234202738077366663076337299, −6.33076629989246699792657203148, −5.61966512870565069430697288674, −4.68861280145512400422675370761, −4.01531205183555088573929775424, −2.92486189706581656547484522016, −1.26683188501870678667768599857,
1.06641710939528831820378112154, 2.13443325513619328430441501857, 3.26943665264599669528267914914, 4.14003316636666484513030518336, 4.71928452536519784101442510073, 5.84010297581943704800357386795, 6.72695083850832415561837108611, 7.56290744372002735875204274828, 8.627010823943086648310666178849, 9.270622441915439542975924100235