L(s) = 1 | + (0.160 + 0.278i)3-s + (−1.94 + 3.37i)5-s + (1.44 − 2.50i)9-s + (−0.5 − 0.866i)11-s − 0.218·13-s − 1.25·15-s + (−2.43 − 4.21i)17-s + (0.321 − 0.557i)19-s + (3.26 − 5.66i)23-s + (−5.09 − 8.81i)25-s + 1.89·27-s + 10.4·29-s + (1.51 + 2.62i)31-s + (0.160 − 0.278i)33-s + (0.948 − 1.64i)37-s + ⋯ |
L(s) = 1 | + (0.0928 + 0.160i)3-s + (−0.871 + 1.50i)5-s + (0.482 − 0.836i)9-s + (−0.150 − 0.261i)11-s − 0.0605·13-s − 0.323·15-s + (−0.589 − 1.02i)17-s + (0.0737 − 0.127i)19-s + (0.681 − 1.18i)23-s + (−1.01 − 1.76i)25-s + 0.364·27-s + 1.93·29-s + (0.272 + 0.472i)31-s + (0.0279 − 0.0484i)33-s + (0.155 − 0.270i)37-s + ⋯ |
Λ(s)=(=(2156s/2ΓC(s)L(s)(0.991+0.126i)Λ(2−s)
Λ(s)=(=(2156s/2ΓC(s+1/2)L(s)(0.991+0.126i)Λ(1−s)
Degree: |
2 |
Conductor: |
2156
= 22⋅72⋅11
|
Sign: |
0.991+0.126i
|
Analytic conductor: |
17.2157 |
Root analytic conductor: |
4.14918 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2156(177,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2156, ( :1/2), 0.991+0.126i)
|
Particular Values
L(1) |
≈ |
1.426257493 |
L(21) |
≈ |
1.426257493 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 11 | 1+(0.5+0.866i)T |
good | 3 | 1+(−0.160−0.278i)T+(−1.5+2.59i)T2 |
| 5 | 1+(1.94−3.37i)T+(−2.5−4.33i)T2 |
| 13 | 1+0.218T+13T2 |
| 17 | 1+(2.43+4.21i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−0.321+0.557i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−3.26+5.66i)T+(−11.5−19.9i)T2 |
| 29 | 1−10.4T+29T2 |
| 31 | 1+(−1.51−2.62i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−0.948+1.64i)T+(−18.5−32.0i)T2 |
| 41 | 1+4.86T+41T2 |
| 43 | 1+1.35T+43T2 |
| 47 | 1+(−2.78+4.82i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−3.89−6.74i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−3.83−6.64i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−4.00+6.93i)T+(−30.5−52.8i)T2 |
| 67 | 1+(1.26+2.19i)T+(−33.5+58.0i)T2 |
| 71 | 1+14.3T+71T2 |
| 73 | 1+(−4.43−7.67i)T+(−36.5+63.2i)T2 |
| 79 | 1+(6.57−11.3i)T+(−39.5−68.4i)T2 |
| 83 | 1−9.72T+83T2 |
| 89 | 1+(−5.30+9.18i)T+(−44.5−77.0i)T2 |
| 97 | 1−0.746T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.954230986069185474751728195966, −8.331584983545290254194983829200, −7.22058892981886070720661296939, −6.88058111322526611873778353957, −6.24170336968499550473430869006, −4.84454343867032426761033347930, −4.08187080413008127069325662175, −3.11066521037368758677767850212, −2.60807007762075833575688387093, −0.63376028209176066330298216705,
0.990553545475000579962355740144, 1.97881037082722025692354397981, 3.42603938634556892874002736490, 4.51440583412259033568327453378, 4.78185682215433250577209714816, 5.79584642693067227029280620183, 6.95554026952207755992985090767, 7.72963587311613982553051174851, 8.341282070037325762990030861303, 8.820801911501504162237685163469