L(s) = 1 | + (0.160 + 0.278i)3-s + (−1.94 + 3.37i)5-s + (1.44 − 2.50i)9-s + (−0.5 − 0.866i)11-s − 0.218·13-s − 1.25·15-s + (−2.43 − 4.21i)17-s + (0.321 − 0.557i)19-s + (3.26 − 5.66i)23-s + (−5.09 − 8.81i)25-s + 1.89·27-s + 10.4·29-s + (1.51 + 2.62i)31-s + (0.160 − 0.278i)33-s + (0.948 − 1.64i)37-s + ⋯ |
L(s) = 1 | + (0.0928 + 0.160i)3-s + (−0.871 + 1.50i)5-s + (0.482 − 0.836i)9-s + (−0.150 − 0.261i)11-s − 0.0605·13-s − 0.323·15-s + (−0.589 − 1.02i)17-s + (0.0737 − 0.127i)19-s + (0.681 − 1.18i)23-s + (−1.01 − 1.76i)25-s + 0.364·27-s + 1.93·29-s + (0.272 + 0.472i)31-s + (0.0279 − 0.0484i)33-s + (0.155 − 0.270i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 + 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.426257493\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.426257493\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
good | 3 | \( 1 + (-0.160 - 0.278i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (1.94 - 3.37i)T + (-2.5 - 4.33i)T^{2} \) |
| 13 | \( 1 + 0.218T + 13T^{2} \) |
| 17 | \( 1 + (2.43 + 4.21i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.321 + 0.557i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.26 + 5.66i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 10.4T + 29T^{2} \) |
| 31 | \( 1 + (-1.51 - 2.62i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.948 + 1.64i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 4.86T + 41T^{2} \) |
| 43 | \( 1 + 1.35T + 43T^{2} \) |
| 47 | \( 1 + (-2.78 + 4.82i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.89 - 6.74i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.83 - 6.64i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.00 + 6.93i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1.26 + 2.19i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 14.3T + 71T^{2} \) |
| 73 | \( 1 + (-4.43 - 7.67i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.57 - 11.3i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 9.72T + 83T^{2} \) |
| 89 | \( 1 + (-5.30 + 9.18i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 0.746T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.954230986069185474751728195966, −8.331584983545290254194983829200, −7.22058892981886070720661296939, −6.88058111322526611873778353957, −6.24170336968499550473430869006, −4.84454343867032426761033347930, −4.08187080413008127069325662175, −3.11066521037368758677767850212, −2.60807007762075833575688387093, −0.63376028209176066330298216705,
0.990553545475000579962355740144, 1.97881037082722025692354397981, 3.42603938634556892874002736490, 4.51440583412259033568327453378, 4.78185682215433250577209714816, 5.79584642693067227029280620183, 6.95554026952207755992985090767, 7.72963587311613982553051174851, 8.341282070037325762990030861303, 8.820801911501504162237685163469