L(s) = 1 | + (−1.69 − 2.92i)3-s + (−0.802 + 1.38i)5-s + (−4.21 + 7.29i)9-s + (−0.5 − 0.866i)11-s + 4.98·13-s + 5.42·15-s + (−0.887 − 1.53i)17-s + (3.38 − 5.85i)19-s + (0.712 − 1.23i)23-s + (1.21 + 2.09i)25-s + 18.3·27-s − 6·29-s + (−1.69 − 2.92i)31-s + (−1.69 + 2.92i)33-s + (2.71 − 4.69i)37-s + ⋯ |
L(s) = 1 | + (−0.975 − 1.69i)3-s + (−0.358 + 0.621i)5-s + (−1.40 + 2.43i)9-s + (−0.150 − 0.261i)11-s + 1.38·13-s + 1.40·15-s + (−0.215 − 0.372i)17-s + (0.775 − 1.34i)19-s + (0.148 − 0.257i)23-s + (0.242 + 0.419i)25-s + 3.52·27-s − 1.11·29-s + (−0.303 − 0.525i)31-s + (−0.294 + 0.509i)33-s + (0.445 − 0.772i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5928937598\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5928937598\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
good | 3 | \( 1 + (1.69 + 2.92i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (0.802 - 1.38i)T + (-2.5 - 4.33i)T^{2} \) |
| 13 | \( 1 - 4.98T + 13T^{2} \) |
| 17 | \( 1 + (0.887 + 1.53i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.38 + 5.85i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.712 + 1.23i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 6T + 29T^{2} \) |
| 31 | \( 1 + (1.69 + 2.92i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.71 + 4.69i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 8.19T + 41T^{2} \) |
| 43 | \( 1 + 8.84T + 43T^{2} \) |
| 47 | \( 1 + (-0.887 + 1.53i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.42 - 9.39i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.0851 - 0.147i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.87 + 10.1i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.71 + 11.6i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 5.42T + 71T^{2} \) |
| 73 | \( 1 + (2.66 + 4.61i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3 - 5.19i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 3.55T + 83T^{2} \) |
| 89 | \( 1 + (5.95 - 10.3i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 8.36T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.406987831761687949182834150246, −7.64603895900867744198504231595, −7.01345972429314121959120108604, −6.52032632218503913545460015437, −5.68124745200946318477471270223, −5.00361511856524881955794531849, −3.50393299776644175009464825885, −2.50638317841795320667832620720, −1.38315634988011351028037410773, −0.27238093866262987469409157826,
1.26385374939106260607945373442, 3.36435366774695125743136028035, 3.85263009304727524059645027533, 4.65852960113267510906891423530, 5.46707040316620964567738307031, 5.95534524494359188468673466038, 6.95525532307627157089806921230, 8.438323152586806221885078080996, 8.622194733472543745665891614956, 9.756287119092866556126845409102