L(s) = 1 | + (−0.5 − 0.866i)3-s + (−0.5 + 0.866i)5-s + (1 − 1.73i)9-s + (−0.5 − 0.866i)11-s + 4·13-s + 0.999·15-s + (−3 − 5.19i)17-s + (−1 + 1.73i)19-s + (−0.5 + 0.866i)23-s + (2 + 3.46i)25-s − 5·27-s + 2·29-s + (−0.5 − 0.866i)31-s + (−0.499 + 0.866i)33-s + (4.5 − 7.79i)37-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.223 + 0.387i)5-s + (0.333 − 0.577i)9-s + (−0.150 − 0.261i)11-s + 1.10·13-s + 0.258·15-s + (−0.727 − 1.26i)17-s + (−0.229 + 0.397i)19-s + (−0.104 + 0.180i)23-s + (0.400 + 0.692i)25-s − 0.962·27-s + 0.371·29-s + (−0.0898 − 0.155i)31-s + (−0.0870 + 0.150i)33-s + (0.739 − 1.28i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.266 + 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.266 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.250465639\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.250465639\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
good | 3 | \( 1 + (0.5 + 0.866i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T + (-2.5 - 4.33i)T^{2} \) |
| 13 | \( 1 - 4T + 13T^{2} \) |
| 17 | \( 1 + (3 + 5.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1 - 1.73i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 2T + 29T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.5 + 7.79i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 - 8T + 43T^{2} \) |
| 47 | \( 1 + (4 - 6.92i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (5 + 8.66i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1 - 1.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.5 + 9.52i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 11T + 71T^{2} \) |
| 73 | \( 1 + (7 + 12.1i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-7 + 12.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 4T + 83T^{2} \) |
| 89 | \( 1 + (-6.5 + 11.2i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 9T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.970223580286368908302998071960, −7.896262769461582017507628713383, −7.27154564983345459006577599381, −6.46861111383483806530564430342, −5.94904164635695306718978825712, −4.83754937906546296450857556127, −3.82746184643946894282068710752, −3.02603202034414322023880640952, −1.72519382814047571503695776360, −0.49293345069549535176435835483,
1.28439983828070620310397239280, 2.47893070609580533230786152337, 3.84991415018960788003360682028, 4.41758361444581985897074544700, 5.18838588539747291173815597652, 6.17791496282122700598820513981, 6.82616851982956168273645930075, 8.048262074180668912546398423150, 8.413600060032320351069710890438, 9.271203085496987075978915162261