L(s) = 1 | + (−0.5 − 0.866i)3-s + (−0.5 + 0.866i)5-s + (1 − 1.73i)9-s + (−0.5 − 0.866i)11-s + 4·13-s + 0.999·15-s + (−3 − 5.19i)17-s + (−1 + 1.73i)19-s + (−0.5 + 0.866i)23-s + (2 + 3.46i)25-s − 5·27-s + 2·29-s + (−0.5 − 0.866i)31-s + (−0.499 + 0.866i)33-s + (4.5 − 7.79i)37-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.223 + 0.387i)5-s + (0.333 − 0.577i)9-s + (−0.150 − 0.261i)11-s + 1.10·13-s + 0.258·15-s + (−0.727 − 1.26i)17-s + (−0.229 + 0.397i)19-s + (−0.104 + 0.180i)23-s + (0.400 + 0.692i)25-s − 0.962·27-s + 0.371·29-s + (−0.0898 − 0.155i)31-s + (−0.0870 + 0.150i)33-s + (0.739 − 1.28i)37-s + ⋯ |
Λ(s)=(=(2156s/2ΓC(s)L(s)(−0.266+0.963i)Λ(2−s)
Λ(s)=(=(2156s/2ΓC(s+1/2)L(s)(−0.266+0.963i)Λ(1−s)
Degree: |
2 |
Conductor: |
2156
= 22⋅72⋅11
|
Sign: |
−0.266+0.963i
|
Analytic conductor: |
17.2157 |
Root analytic conductor: |
4.14918 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2156(177,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2156, ( :1/2), −0.266+0.963i)
|
Particular Values
L(1) |
≈ |
1.250465639 |
L(21) |
≈ |
1.250465639 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 11 | 1+(0.5+0.866i)T |
good | 3 | 1+(0.5+0.866i)T+(−1.5+2.59i)T2 |
| 5 | 1+(0.5−0.866i)T+(−2.5−4.33i)T2 |
| 13 | 1−4T+13T2 |
| 17 | 1+(3+5.19i)T+(−8.5+14.7i)T2 |
| 19 | 1+(1−1.73i)T+(−9.5−16.4i)T2 |
| 23 | 1+(0.5−0.866i)T+(−11.5−19.9i)T2 |
| 29 | 1−2T+29T2 |
| 31 | 1+(0.5+0.866i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−4.5+7.79i)T+(−18.5−32.0i)T2 |
| 41 | 1+6T+41T2 |
| 43 | 1−8T+43T2 |
| 47 | 1+(4−6.92i)T+(−23.5−40.7i)T2 |
| 53 | 1+(5+8.66i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−0.5−0.866i)T+(−29.5+51.0i)T2 |
| 61 | 1+(1−1.73i)T+(−30.5−52.8i)T2 |
| 67 | 1+(5.5+9.52i)T+(−33.5+58.0i)T2 |
| 71 | 1−11T+71T2 |
| 73 | 1+(7+12.1i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−7+12.1i)T+(−39.5−68.4i)T2 |
| 83 | 1+4T+83T2 |
| 89 | 1+(−6.5+11.2i)T+(−44.5−77.0i)T2 |
| 97 | 1−9T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.970223580286368908302998071960, −7.896262769461582017507628713383, −7.27154564983345459006577599381, −6.46861111383483806530564430342, −5.94904164635695306718978825712, −4.83754937906546296450857556127, −3.82746184643946894282068710752, −3.02603202034414322023880640952, −1.72519382814047571503695776360, −0.49293345069549535176435835483,
1.28439983828070620310397239280, 2.47893070609580533230786152337, 3.84991415018960788003360682028, 4.41758361444581985897074544700, 5.18838588539747291173815597652, 6.17791496282122700598820513981, 6.82616851982956168273645930075, 8.048262074180668912546398423150, 8.413600060032320351069710890438, 9.271203085496987075978915162261