L(s) = 1 | + (0.707 − 1.22i)3-s + (0.500 + 0.866i)9-s + (0.5 − 0.866i)11-s + 1.41·13-s + (−3.53 + 6.12i)17-s + (1.41 + 2.44i)19-s + (2 + 3.46i)23-s + (2.5 − 4.33i)25-s + 5.65·27-s + 2·29-s + (−2.12 + 3.67i)31-s + (−0.707 − 1.22i)33-s + (2 + 3.46i)37-s + (1.00 − 1.73i)39-s − 1.41·41-s + ⋯ |
L(s) = 1 | + (0.408 − 0.707i)3-s + (0.166 + 0.288i)9-s + (0.150 − 0.261i)11-s + 0.392·13-s + (−0.857 + 1.48i)17-s + (0.324 + 0.561i)19-s + (0.417 + 0.722i)23-s + (0.5 − 0.866i)25-s + 1.08·27-s + 0.371·29-s + (−0.381 + 0.659i)31-s + (−0.123 − 0.213i)33-s + (0.328 + 0.569i)37-s + (0.160 − 0.277i)39-s − 0.220·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.117546590\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.117546590\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
good | 3 | \( 1 + (-0.707 + 1.22i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-2.5 + 4.33i)T^{2} \) |
| 13 | \( 1 - 1.41T + 13T^{2} \) |
| 17 | \( 1 + (3.53 - 6.12i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.41 - 2.44i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2 - 3.46i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 2T + 29T^{2} \) |
| 31 | \( 1 + (2.12 - 3.67i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2 - 3.46i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 1.41T + 41T^{2} \) |
| 43 | \( 1 - 2T + 43T^{2} \) |
| 47 | \( 1 + (-4.94 - 8.57i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2 + 3.46i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.12 + 3.67i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.36 + 11.0i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4 + 6.92i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + (-0.707 + 1.22i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-5 - 8.66i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 8.48T + 83T^{2} \) |
| 89 | \( 1 + (-5.65 - 9.79i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 8.48T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.846512966559789157660729230671, −8.271412877891261898249201306546, −7.68306485728899263419824817733, −6.69999265539355252856615103271, −6.19913271860185442274621953720, −5.10263312365293997878856193351, −4.13894262629125312046146407048, −3.18501656123145836384266699957, −2.07962606377655548064038089994, −1.20921582178916836626915820982,
0.810889429789893705305067641421, 2.41499464965090300152443686101, 3.24532167763463205435077415999, 4.24742316397698469615886274129, 4.82547367399436220357001523186, 5.83802496510041860472718140662, 6.96860134462120088880204811471, 7.28852330944209207686613053924, 8.704789028196061167402114690447, 8.992951849696607716599342185315