L(s) = 1 | + (0.707 − 1.22i)3-s + (0.500 + 0.866i)9-s + (0.5 − 0.866i)11-s + 1.41·13-s + (−3.53 + 6.12i)17-s + (1.41 + 2.44i)19-s + (2 + 3.46i)23-s + (2.5 − 4.33i)25-s + 5.65·27-s + 2·29-s + (−2.12 + 3.67i)31-s + (−0.707 − 1.22i)33-s + (2 + 3.46i)37-s + (1.00 − 1.73i)39-s − 1.41·41-s + ⋯ |
L(s) = 1 | + (0.408 − 0.707i)3-s + (0.166 + 0.288i)9-s + (0.150 − 0.261i)11-s + 0.392·13-s + (−0.857 + 1.48i)17-s + (0.324 + 0.561i)19-s + (0.417 + 0.722i)23-s + (0.5 − 0.866i)25-s + 1.08·27-s + 0.371·29-s + (−0.381 + 0.659i)31-s + (−0.123 − 0.213i)33-s + (0.328 + 0.569i)37-s + (0.160 − 0.277i)39-s − 0.220·41-s + ⋯ |
Λ(s)=(=(2156s/2ΓC(s)L(s)(0.991−0.126i)Λ(2−s)
Λ(s)=(=(2156s/2ΓC(s+1/2)L(s)(0.991−0.126i)Λ(1−s)
Degree: |
2 |
Conductor: |
2156
= 22⋅72⋅11
|
Sign: |
0.991−0.126i
|
Analytic conductor: |
17.2157 |
Root analytic conductor: |
4.14918 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2156(1145,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2156, ( :1/2), 0.991−0.126i)
|
Particular Values
L(1) |
≈ |
2.117546590 |
L(21) |
≈ |
2.117546590 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 11 | 1+(−0.5+0.866i)T |
good | 3 | 1+(−0.707+1.22i)T+(−1.5−2.59i)T2 |
| 5 | 1+(−2.5+4.33i)T2 |
| 13 | 1−1.41T+13T2 |
| 17 | 1+(3.53−6.12i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.41−2.44i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−2−3.46i)T+(−11.5+19.9i)T2 |
| 29 | 1−2T+29T2 |
| 31 | 1+(2.12−3.67i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−2−3.46i)T+(−18.5+32.0i)T2 |
| 41 | 1+1.41T+41T2 |
| 43 | 1−2T+43T2 |
| 47 | 1+(−4.94−8.57i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−2+3.46i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−2.12+3.67i)T+(−29.5−51.0i)T2 |
| 61 | 1+(6.36+11.0i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−4+6.92i)T+(−33.5−58.0i)T2 |
| 71 | 1+71T2 |
| 73 | 1+(−0.707+1.22i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−5−8.66i)T+(−39.5+68.4i)T2 |
| 83 | 1+8.48T+83T2 |
| 89 | 1+(−5.65−9.79i)T+(−44.5+77.0i)T2 |
| 97 | 1+8.48T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.846512966559789157660729230671, −8.271412877891261898249201306546, −7.68306485728899263419824817733, −6.69999265539355252856615103271, −6.19913271860185442274621953720, −5.10263312365293997878856193351, −4.13894262629125312046146407048, −3.18501656123145836384266699957, −2.07962606377655548064038089994, −1.20921582178916836626915820982,
0.810889429789893705305067641421, 2.41499464965090300152443686101, 3.24532167763463205435077415999, 4.24742316397698469615886274129, 4.82547367399436220357001523186, 5.83802496510041860472718140662, 6.96860134462120088880204811471, 7.28852330944209207686613053924, 8.704789028196061167402114690447, 8.992951849696607716599342185315