L(s) = 1 | − 5·5-s + 6·7-s − 47·11-s − 5·13-s + 131·17-s + 56·19-s + 3·23-s + 25·25-s + 157·29-s − 225·31-s − 30·35-s − 70·37-s − 140·41-s − 397·43-s − 347·47-s − 307·49-s − 4·53-s + 235·55-s + 748·59-s − 338·61-s + 25·65-s − 492·67-s + 32·71-s + 970·73-s − 282·77-s + 1.25e3·79-s − 102·83-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 0.323·7-s − 1.28·11-s − 0.106·13-s + 1.86·17-s + 0.676·19-s + 0.0271·23-s + 1/5·25-s + 1.00·29-s − 1.30·31-s − 0.144·35-s − 0.311·37-s − 0.533·41-s − 1.40·43-s − 1.07·47-s − 0.895·49-s − 0.0103·53-s + 0.576·55-s + 1.65·59-s − 0.709·61-s + 0.0477·65-s − 0.897·67-s + 0.0534·71-s + 1.55·73-s − 0.417·77-s + 1.79·79-s − 0.134·83-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2160s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.736751650 |
L(21) |
≈ |
1.736751650 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+pT |
good | 7 | 1−6T+p3T2 |
| 11 | 1+47T+p3T2 |
| 13 | 1+5T+p3T2 |
| 17 | 1−131T+p3T2 |
| 19 | 1−56T+p3T2 |
| 23 | 1−3T+p3T2 |
| 29 | 1−157T+p3T2 |
| 31 | 1+225T+p3T2 |
| 37 | 1+70T+p3T2 |
| 41 | 1+140T+p3T2 |
| 43 | 1+397T+p3T2 |
| 47 | 1+347T+p3T2 |
| 53 | 1+4T+p3T2 |
| 59 | 1−748T+p3T2 |
| 61 | 1+338T+p3T2 |
| 67 | 1+492T+p3T2 |
| 71 | 1−32T+p3T2 |
| 73 | 1−970T+p3T2 |
| 79 | 1−1257T+p3T2 |
| 83 | 1+102T+p3T2 |
| 89 | 1−1488T+p3T2 |
| 97 | 1−974T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.498100785907236993859845443436, −7.890196878816479062806280722872, −7.42669317580197836844514959844, −6.39599039214083899139911304265, −5.16037531041611192514165527988, −5.10589647059892854649800396385, −3.60775903425659351766426725215, −3.03166797054684620898646913165, −1.77048020943707349065105844139, −0.59887782828199126544780922026,
0.59887782828199126544780922026, 1.77048020943707349065105844139, 3.03166797054684620898646913165, 3.60775903425659351766426725215, 5.10589647059892854649800396385, 5.16037531041611192514165527988, 6.39599039214083899139911304265, 7.42669317580197836844514959844, 7.890196878816479062806280722872, 8.498100785907236993859845443436