L(s) = 1 | + 5·5-s − 10.2·7-s + 44.3·11-s − 50.8·13-s + 25.2·17-s + 31.3·19-s − 76.1·23-s + 25·25-s + 156.·29-s − 134.·31-s − 51.2·35-s + 81.2·37-s + 326.·41-s − 422.·43-s + 452.·47-s − 237.·49-s + 98.1·53-s + 221.·55-s − 540.·59-s + 522.·61-s − 254.·65-s + 129.·67-s − 26.6·71-s − 147.·73-s − 454.·77-s + 1.08e3·79-s − 594.·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 0.553·7-s + 1.21·11-s − 1.08·13-s + 0.360·17-s + 0.378·19-s − 0.690·23-s + 0.200·25-s + 0.998·29-s − 0.779·31-s − 0.247·35-s + 0.360·37-s + 1.24·41-s − 1.49·43-s + 1.40·47-s − 0.693·49-s + 0.254·53-s + 0.543·55-s − 1.19·59-s + 1.09·61-s − 0.485·65-s + 0.235·67-s − 0.0444·71-s − 0.237·73-s − 0.673·77-s + 1.55·79-s − 0.786·83-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2160s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.218144326 |
L(21) |
≈ |
2.218144326 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−5T |
good | 7 | 1+10.2T+343T2 |
| 11 | 1−44.3T+1.33e3T2 |
| 13 | 1+50.8T+2.19e3T2 |
| 17 | 1−25.2T+4.91e3T2 |
| 19 | 1−31.3T+6.85e3T2 |
| 23 | 1+76.1T+1.21e4T2 |
| 29 | 1−156.T+2.43e4T2 |
| 31 | 1+134.T+2.97e4T2 |
| 37 | 1−81.2T+5.06e4T2 |
| 41 | 1−326.T+6.89e4T2 |
| 43 | 1+422.T+7.95e4T2 |
| 47 | 1−452.T+1.03e5T2 |
| 53 | 1−98.1T+1.48e5T2 |
| 59 | 1+540.T+2.05e5T2 |
| 61 | 1−522.T+2.26e5T2 |
| 67 | 1−129.T+3.00e5T2 |
| 71 | 1+26.6T+3.57e5T2 |
| 73 | 1+147.T+3.89e5T2 |
| 79 | 1−1.08e3T+4.93e5T2 |
| 83 | 1+594.T+5.71e5T2 |
| 89 | 1−592.T+7.04e5T2 |
| 97 | 1+666.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.893264620884909463560142931877, −7.900709345842155104201924872688, −7.06946208982433766719888245251, −6.40353320112490616042641398705, −5.64643679931311375098650570035, −4.69883424859375951691219361431, −3.78712464588099908583269822776, −2.84300705714419785474799367710, −1.82454083217973335123660263679, −0.67727262051236517908123904869,
0.67727262051236517908123904869, 1.82454083217973335123660263679, 2.84300705714419785474799367710, 3.78712464588099908583269822776, 4.69883424859375951691219361431, 5.64643679931311375098650570035, 6.40353320112490616042641398705, 7.06946208982433766719888245251, 7.900709345842155104201924872688, 8.893264620884909463560142931877